Your browser doesn't support javascript.
loading
Tuning of the electronic and vibrational properties of epitaxial MoS2through He-ion beam modification.
Parida, Shayani; Wang, Yongqiang; Zhao, Huan; Htoon, Han; Kucinski, Theresa Marie; Chubarov, Mikhail; Choudhury, Tanushree; Redwing, Joan Marie; Dongare, Avinash; Pettes, Michael Thompson.
Afiliação
  • Parida S; Center for Integrated Nanotechnologies (CINT), Materials Physics and Applications Division, Los Alamos National Laboratory, NM, United States of America.
  • Wang Y; Department of Materials Science and Engineering, University of Connecticut, CT, United States of America.
  • Zhao H; Center for Integrated Nanotechnologies (CINT), Materials Physics and Applications Division, Los Alamos National Laboratory, NM, United States of America.
  • Htoon H; Materials Science in Radiation & Dynamics Extremes (MST-8), Materials Science and Technology Division, Los Alamos National Laboratory, NM, United States of America.
  • Kucinski TM; Center for Integrated Nanotechnologies (CINT), Materials Physics and Applications Division, Los Alamos National Laboratory, NM, United States of America.
  • Chubarov M; Center for Integrated Nanotechnologies (CINT), Materials Physics and Applications Division, Los Alamos National Laboratory, NM, United States of America.
  • Choudhury T; Center for Integrated Nanotechnologies (CINT), Materials Physics and Applications Division, Los Alamos National Laboratory, NM, United States of America.
  • Redwing JM; 2D Crystal Consortium-Materials Innovation Platform, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, United States of America.
  • Dongare A; 2D Crystal Consortium-Materials Innovation Platform, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, United States of America.
  • Pettes MT; 2D Crystal Consortium-Materials Innovation Platform, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, United States of America.
Nanotechnology ; 34(8)2022 Dec 07.
Article em En | MEDLINE | ID: mdl-36395493
ABSTRACT
Atomically thin transition metal dichalcogenides (TMDs), like MoS2with high carrier mobilities and tunable electron dispersions, are unique active material candidates for next generation opto-electronic devices. Previous studies on ion irradiation show great potential applications when applied to two-dimensional (2D) materials, yet have been limited to micron size exfoliated flakes or smaller. To demonstrate the scalability of this method for industrial applications, we report the application of relatively low power (50 keV)4He+ion irradiation towards tuning the optoelectronic properties of an epitaxially grown continuous film of MoS2at the wafer scale, and demonstrate that precise manipulation of atomistic defects can be achieved in TMD films using ion implanters. The effect of4He+ion fluence on the PL and Raman signatures of the irradiated film provides new insights into the type and concentration of defects formed in the MoS2lattice, which are quantified through ion beam analysis. PL and Raman spectroscopy indicate that point defects are generated without causing disruption to the underlying lattice structure of the 2D films and hence, this technique can prove to be an effective way to achieve defect-mediated control over the opto-electronic properties of MoS2and other 2D materials.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article