Your browser doesn't support javascript.
loading
Munc13 supports fusogenicity of non-docked vesicles at synapses with disrupted active zones.
Tan, Chao; de Nola, Giovanni; Qiao, Claire; Imig, Cordelia; Born, Richard T; Brose, Nils; Kaeser, Pascal S.
Afiliação
  • Tan C; Department of Neurobiology, Harvard Medical School, Boston, United States.
  • de Nola G; Department of Neurobiology, Harvard Medical School, Boston, United States.
  • Qiao C; Department of Neurobiology, Harvard Medical School, Boston, United States.
  • Imig C; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
  • Born RT; Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany.
  • Brose N; Department of Neurobiology, Harvard Medical School, Boston, United States.
  • Kaeser PS; Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany.
Elife ; 112022 11 18.
Article em En | MEDLINE | ID: mdl-36398873
ABSTRACT
Active zones consist of protein scaffolds that are tightly attached to the presynaptic plasma membrane. They dock and prime synaptic vesicles, couple them to voltage-gated Ca2+ channels, and direct neurotransmitter release toward postsynaptic receptor domains. Simultaneous RIM + ELKS ablation disrupts these scaffolds, abolishes vesicle docking, and removes active zone-targeted Munc13, but some vesicles remain releasable. To assess whether this enduring vesicular fusogenicity is mediated by non-active zone-anchored Munc13 or is Munc13-independent, we ablated Munc13-1 and Munc13-2 in addition to RIM + ELKS in mouse hippocampal neurons. The hextuple knockout synapses lacked docked vesicles, but other ultrastructural features were near-normal despite the strong genetic manipulation. Removing Munc13 in addition to RIM + ELKS impaired action potential-evoked vesicle fusion more strongly than RIM + ELKS knockout by further decreasing the releasable vesicle pool. Hence, Munc13 can support some fusogenicity without RIM and ELKS, and presynaptic recruitment of Munc13, even without active zone anchoring, suffices to generate some fusion-competent vesicles.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sinapses / Vesículas Sinápticas Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sinapses / Vesículas Sinápticas Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article