Your browser doesn't support javascript.
loading
Dysregulated energy metabolism impairs chondrocyte function in osteoarthritis.
Wu, X; Liyanage, C; Plan, M; Stark, T; McCubbin, T; Barrero, R A; Batra, J; Crawford, R; Xiao, Y; Prasadam, I.
Afiliação
  • Wu X; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia; Department of Orthopaedic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
  • Liyanage C; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia; Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia.
  • Plan M; Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; Metabolomics Australia (Queensland Node), AIBN, The University of Queensland, Brisbane, QLD 4072, Australia.
  • Stark T; Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; Metabolomics Australia (Queensland Node), AIBN, The University of Queensland, Brisbane, QLD 4072, Australia.
  • McCubbin T; Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; Metabolomics Australia (Queensland Node), AIBN, The University of Queensland, Brisbane, QLD 4072, Australia.
  • Barrero RA; eResearch Office, Queensland University of Technology, Brisbane, QLD 4000, Australia.
  • Batra J; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia; Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia.
  • Crawford R; The Prince Charles Hospital, Chermside, Brisbane, QLD 4032, Australia.
  • Xiao Y; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4059, Australia.
  • Prasadam I; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia. Electronic address: i.prasadam@qut.edu.au.
Osteoarthritis Cartilage ; 31(5): 613-626, 2023 05.
Article em En | MEDLINE | ID: mdl-36410637
ABSTRACT

OBJECTIVES:

Metabolic pathways are a series of chemical reactions by which cells take in nutrient substrates for energy and building blocks needed to maintain critical cellular processes. Details of chondrocyte metabolism and how it rewires during the progression of osteoarthritis (OA) are unknown. This research aims to identify what changes in the energy metabolic state occur in OA cartilage.

METHODS:

Patient matched OA and non-OA cartilage specimens were harvested from total knee replacement patients. Cartilage was first collected for metabolomics, proteomics, and transcriptomics analyses to study global alterations in OA metabolism. We then determined the metabolic routes by tracking [U-13C] isotope with liquid chromatography-mass spectrometry (LC-MS). We further evaluated cellular bioenergetic profiles by measuring oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) and investigated the effects of low-dose and short-term effects of 2-deoxyglucose (2DG) on chondrocytes.

RESULTS:

OA chondrocytes showed increased basal ECAR and more lactate production compared to non-OA chondrocytes. [U-13C] glucose labelling revealed that less glucose-derived carbon entered the tricarboxylic acid (TCA) cycle. On the other hand, mitochondrial respiratory rates were markedly decreased in the OA chondrocytes compared to non-OA chondrocytes. These changes were accompanied by decreased cellular ATP production, mitochondrial membrane potential and disrupted mitochondrial morphology. We further demonstrated in vitro that short-term inhibition of glycolysis suppressed matrix degeneration gene expression in chondrocytes and bovine cartilage explants cultured under inflammatory conditions.

CONCLUSION:

This study represents the first comprehensive comparative analysis of metabolism in OA chondrocytes and lays the groundwork for therapeutic targeting of metabolism in OA.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteoartrite / Cartilagem Articular Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteoartrite / Cartilagem Articular Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article