Synthesis of Chrysoporphyrins and a Related Benzopyrene-Fused System.
J Org Chem
; 87(24): 16276-16296, 2022 12 16.
Article
em En
| MEDLINE
| ID: mdl-36459435
Reaction of 6-nitrochrysene with ethyl isocyanoacetate in the presence of a non-nucleophilic base gave a c-annulated pyrrole ethyl ester that was used to prepare chrysene-fused tripyrranes and a chrysopyrrole dialdehyde. Chrysene-fused tripyrranes were reacted with a pyrrole dialdehyde, but poor yields of chrysoporphyrins were obtained. However, condensation of the chrysopyrrole dialdehyde with a series of tripyrranes afforded excellent yields of chrysoporphyrins and an acenaphtho-chrysoporphyrin. Iron(III) chloride mediated oxidative cyclization of a dihexylchrysoporphyrin afforded a benzopyrene-fused porphyrin that exhibited a strongly red-shifted electronic absorption spectrum. DFT calculations show that both chrysoporphyrins and the benzopyrene-fused porphyrin have tautomers that possess 34π electron delocalization pathways that pass through the porphyrin nucleus and the fused polycyclic aromatic hydrocarbon (PAH) units. Protonation gave dications that favor 36-atom 34π electron circuits. c-Annulated pyrrole dialdehydes were also condensed with a carbatripyrrin to generate PAH-fused carbaporphyrins that retained fully aromatic properties.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Porfirinas
/
Crisenos
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article