Your browser doesn't support javascript.
loading
Self-Powered Gradient Hydrogel Sensor with the Temperature-Triggered Reversible Adhension.
Sun, Dong; Peng, Cun; Tang, Yuan; Qi, Pengfei; Fan, Wenxin; Xu, Qiang; Sui, Kunyan.
Afiliação
  • Sun D; State Key Laboratory of Bio-Fiber and Eco-Textiles, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textile Technology Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
  • Peng C; College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China.
  • Tang Y; State Key Laboratory of Bio-Fiber and Eco-Textiles, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textile Technology Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
  • Qi P; State Key Laboratory of Bio-Fiber and Eco-Textiles, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textile Technology Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
  • Fan W; State Key Laboratory of Bio-Fiber and Eco-Textiles, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textile Technology Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
  • Xu Q; Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266071, China.
  • Sui K; State Key Laboratory of Bio-Fiber and Eco-Textiles, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textile Technology Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
Polymers (Basel) ; 14(23)2022 Dec 05.
Article em En | MEDLINE | ID: mdl-36501705
ABSTRACT
The skin, as the largest organ of human body, can use ions as information carriers to convert multiple external stimuli into biological potential signals. So far, artificial skin that can imitate the functionality of human skin has been extensively investigated. However, the demand for additional power, non-reusability and serious damage to the skin greatly limits applications. Here, we have developed a self-powered gradient hydrogel which has high temperature-triggered adhesion and room temperature-triggered easy separation characteristics. The self-powered gradient hydrogels are polymerized using 2-(dimethylamino) ethyl metharcylate (DMAEMA) and N-isopropylacrylamide (NIPAM) under unilateral UV irradiation. The prepared hydrogels achieve good adhesion at high temperature and detachment at a low temperature. In addition, according to the thickness-dependent potential of the gradient hydrogel, the hydrogels can also sense pressure changes. This strategy can inspire the design and manufacture of self-powered gradient hydrogel sensors, contributing to the development of complex intelligent artificial skin sensing systems in the future.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article