Your browser doesn't support javascript.
loading
Improving quality control in the routine practice for histopathological interpretation of gastrointestinal endoscopic biopsies using artificial intelligence.
Ko, Young Sin; Choi, Yoo Mi; Kim, Mujin; Park, Youngjin; Ashraf, Murtaza; Quiñones Robles, Willmer Rafell; Kim, Min-Ju; Jang, Jiwook; Yun, Seokju; Hwang, Yuri; Jang, Hani; Yi, Mun Yong.
Afiliação
  • Ko YS; Pathology Center, Seegene Medical Foundation, Seoul, Republic of Korea.
  • Choi YM; Pathology Center, Seegene Medical Foundation, Seoul, Republic of Korea.
  • Kim M; Graduate School of Data Science, Department of Industrial & Systems Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
  • Park Y; Graduate School of Data Science, Department of Industrial & Systems Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
  • Ashraf M; Graduate School of Data Science, Department of Industrial & Systems Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
  • Quiñones Robles WR; Graduate School of Data Science, Department of Industrial & Systems Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
  • Kim MJ; Department of Pathology, Incheon Sejong Hospital, Incheon, Republic of Korea.
  • Jang J; AI Research Team, Digital Innovation Sector, Seegene Medical Foundation, Seoul, Republic of Korea.
  • Yun S; AI Research Team, Digital Innovation Sector, Seegene Medical Foundation, Seoul, Republic of Korea.
  • Hwang Y; AI Research Team, Digital Innovation Sector, Seegene Medical Foundation, Seoul, Republic of Korea.
  • Jang H; AI Research Team, Digital Innovation Sector, Seegene Medical Foundation, Seoul, Republic of Korea.
  • Yi MY; Graduate School of Data Science, Department of Industrial & Systems Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
PLoS One ; 17(12): e0278542, 2022.
Article em En | MEDLINE | ID: mdl-36520777
BACKGROUND: Colorectal and gastric cancer are major causes of cancer-related deaths. In Korea, gastrointestinal (GI) endoscopic biopsy specimens account for a high percentage of histopathologic examinations. Lack of a sufficient pathologist workforce can cause an increase in human errors, threatening patient safety. Therefore, we developed a digital pathology total solution combining artificial intelligence (AI) classifier models and pathology laboratory information system for GI endoscopic biopsy specimens to establish a post-analytic daily fast quality control (QC) system, which was applied in clinical practice for a 3-month trial run by four pathologists. METHODS AND FINDINGS: Our whole slide image (WSI) classification framework comprised patch-generator, patch-level classifier, and WSI-level classifier. The classifiers were both based on DenseNet (Dense Convolutional Network). In laboratory tests, the WSI classifier achieved accuracy rates of 95.8% and 96.0% in classifying histopathological WSIs of colorectal and gastric endoscopic biopsy specimens, respectively, into three classes (Negative for dysplasia, Dysplasia, and Malignant). Classification by pathologic diagnosis and AI prediction were compared and daily reviews were conducted, focusing on discordant cases for early detection of potential human errors by the pathologists, allowing immediate correction, before the pathology report error is conveyed to the patients. During the 3-month AI-assisted daily QC trial run period, approximately 7-10 times the number of slides compared to that in the conventional monthly QC (33 months) were reviewed by pathologists; nearly 100% of GI endoscopy biopsy slides were double-checked by the AI models. Further, approximately 17-30 times the number of potential human errors were detected within an average of 1.2 days. CONCLUSIONS: The AI-assisted daily QC system that we developed and established demonstrated notable improvements in QC, in quantitative, qualitative, and time utility aspects. Ultimately, we developed an independent AI-assisted post-analytic daily fast QC system that was clinically applicable and influential, which could enhance patient safety.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Neoplasias Colorretais Tipo de estudo: Diagnostic_studies / Prognostic_studies / Qualitative_research / Screening_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Neoplasias Colorretais Tipo de estudo: Diagnostic_studies / Prognostic_studies / Qualitative_research / Screening_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article