Quasi-partial order continual reassessment method: Applying toxicity scores to cancer dose-finding drug combination trials.
Contemp Clin Trials
; 125: 107050, 2023 02.
Article
em En
| MEDLINE
| ID: mdl-36529437
The primary endpoint of most dose-finding cancer trials is patient toxicity, and the primary goal is to identify the maximum tolerated dose (MTD), that is, the highest dose that falls below or within a pre-specified toxicity tolerability threshold. Conventionally, dose-finding methods have utilized a binary toxicity endpoint based on whether or not a patient experiences a dose limiting-toxicity (DLT). Improving upon this, in recent years several methods have been developed for modeling toxicity scores, a novel continuous endpoint designed to more precisely estimate patient toxicity burden. Separately, drug-combination trials have become increasingly prevalent, and due to added complexities regarding estimating 'true' dose ordering and potential for more complex patient toxicity profiles, provide an ideal setting which may benefit from the improved precision of toxicity scores. In this paper, we merge two frameworks based on the Continual Reassessment Method (CRM) - the Quasi-CRM and the Partial Order CRM (POCRM) - to propose a novel approach for modeling toxicity scores in a combination-trial setting. We demonstrate that utilizing toxicity scores has the potential to greatly improve correct dose-selection over a variety of trial scenarios. We further present a simple adaptation to the toxicity-score model to control for potential over-dosing issues such that it adheres to the conventional DLT definition and will, at worst, perform equivalently to that of the traditional binary DLT framework. We demonstrate that extending toxicity scores to the combination-trial setting offers potential for improvement over the conventional binary endpoint models.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Projetos de Pesquisa
/
Neoplasias
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Limite:
Humans
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article