Your browser doesn't support javascript.
loading
Biodiesel Production by Single and Mixed Immobilized Lipases Using Waste Cooking Oil.
Ben Bacha, Abir; Alonazi, Mona; Alharbi, Mona G; Horchani, Habib; Ben Abdelmalek, Imen.
Afiliação
  • Ben Bacha A; Biochemistry Department, Science College, King Saud University, Riyadh 11495, Saudi Arabia.
  • Alonazi M; Biochemistry Department, Science College, King Saud University, Riyadh 11495, Saudi Arabia.
  • Alharbi MG; Biochemistry Department, Science College, King Saud University, Riyadh 11495, Saudi Arabia.
  • Horchani H; Groupe de Recherche en Environnement et Biotechnologie, Science Department, College of Rivière-Du-Loup, Rivière-Du-Loup, Québec, QC G5R 1R1, Canada.
  • Ben Abdelmalek I; Department of Biology, College of Science, Qassim University, Buraydah 52571, Saudi Arabia.
Molecules ; 27(24)2022 Dec 09.
Article em En | MEDLINE | ID: mdl-36557867
ABSTRACT
Biodiesel is one of the important biofuels as an alternative to petroleum-based diesel fuels. In the current study, enzymatic transesterification reaction was carried out for the production of biodiesel from waste cooking oil (WCO) and experimental conditions were optimized, in order to reach maximum biodiesel yield. Bacillus stearothermophilus and Staphylococcus aureus lipase enzymes were individually immobilized on CaCO3 to be used as environmentally friendly catalysts for biodiesel production. The immobilized lipases exhibited better stability than free ones and were almost fully active after 60 days of storage at 4 °C. A significant biodiesel yield of 97.66 ± 0.57% was achieved without any pre-treatment and at 16 oil/methanol molar ratio, 1% of the enzyme mixture (a 11 ratio mixture of both lipase), 1% water content, after 24 h at 55 °C reaction temperature. The biocatalysts retained 93% of their initial activities after six cycles. The fuel and chemical properties such as the cloud point, viscosity at 40 °C and density at 15 °C of the produced biodiesel complied with international specifications (EN 14214) and, therefore, were comparable to those of other diesels/biodiesels. Interestingly, the resulting biodiesel revealed a linolenic methyl ester content of 0.55 ± 0.02% and an ester content of 97.7 ± 0.21% which is in good agreement with EN14214 requirements. Overall, using mixed CaCO3-immobilized lipases to obtain an environmentally friendly biodiesel from WCO is a promising and effective alternative for biodiesel production catalysis.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ésteres / Biocombustíveis Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ésteres / Biocombustíveis Idioma: En Ano de publicação: 2022 Tipo de documento: Article