Your browser doesn't support javascript.
loading
Metformin promotes angiogenesis and functional recovery in aged mice after spinal cord injury by adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway.
Zhao, Jin-Yun; Sheng, Xiao-Long; Li, Cheng-Jun; Qin, Tian; He, Run-Dong; Dai, Guo-Yu; Cao, Yong; Lu, Hong-Bin; Duan, Chun-Yue; Hu, Jian-Zhong.
Afiliação
  • Zhao JY; Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Researc
  • Sheng XL; Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Researc
  • Li CJ; Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Researc
  • Qin T; Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Researc
  • He RD; Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Researc
  • Dai GY; Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Researc
  • Cao Y; Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Researc
  • Lu HB; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Research Center of Sports and Health; Department of Sports Medicine, Research Centre of Sports M
  • Duan CY; Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Researc
  • Hu JZ; Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Researc
Neural Regen Res ; 18(7): 1553-1562, 2023 Jul.
Article em En | MEDLINE | ID: mdl-36571362
Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury. However, its effect on spinal cord injury in aged mice remains unclear. Considering the essential role of angiogenesis during the regeneration process, we hypothesized that metformin activates the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway in endothelial cells, thereby promoting microvascular regeneration in aged mice after spinal cord injury. In this study, we established young and aged mouse models of contusive spinal cord injury using a modified Allen method. We found that aging hindered the recovery of neurological function and the formation of blood vessels in the spinal cord. Treatment with metformin promoted spinal cord microvascular endothelial cell migration and blood vessel formation in vitro. Furthermore, intraperitoneal injection of metformin in an in vivo model promoted endothelial cell proliferation and increased the density of new blood vessels in the spinal cord, thereby improving neurological function. The role of metformin was reversed by compound C, an adenosine monophosphate-activated protein kinase inhibitor, both in vivo and in vitro, suggesting that the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway likely regulates metformin-mediated angiogenesis after spinal cord injury. These findings suggest that metformin promotes vascular regeneration in the injured spinal cord by activating the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway, thereby improving the neurological function of aged mice after spinal cord injury.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article