Your browser doesn't support javascript.
loading
Granular crystals as strong and fully dense architectured materials.
Karuriya, Ashta Navdeep; Barthelat, Francois.
Afiliação
  • Karuriya AN; Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309.
  • Barthelat F; Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309.
Proc Natl Acad Sci U S A ; 120(1): e2215508120, 2023 Jan 03.
Article em En | MEDLINE | ID: mdl-36574692
ABSTRACT
Dense topologically interlocked panels are made of well-ordered, stiff building blocks interacting mainly by frictional contact. Under mechanical loads, the deformation of the individual blocks is small, but they can slide and rotate collectively, generating high strength, toughness, impact resistance, and damage tolerance. Here, we expand this construction strategy to fully dense, 3D architectured materials made of space filling building blocks or "grains." We used mechanical vibrations to assemble 3D printed rhombic dodecahedral and truncated octahedral grains into fully dense face-centered cubic and body-centered cubic "granular crystals." Triaxial compression tests revealed that these granular crystals are up to 25 times stronger than randomly packed spheres and that after testing, the grains can be recycled into new samples with no loss of strength. They also displayed a rich set of mechanisms nonlinear deformations, crystal plasticity reminiscent of atomistic mechanisms, geometrical hardening, cross-slip, shear-induced dilatancy, and microbuckling. A most intriguing mechanism involved a pressure-dependent "granular crystal plasticity" with interlocked slip planes that completely forbid slip along certain loading directions. We captured these phenomena using a three-length scale theoretical model which agreed well with the experiments. Once fully understood and harnessed, we envision that these mechanisms will lead to 3D architectured materials with unusual and attractive combinations of mechanical performances as well as capabilities for repair, reshaping, on-site alterations, and recycling of the building blocks. In addition, these granular crystals could serve as "model materials" to explore unusual atomic scale deformation mechanisms, for example, non-Schmid plasticity.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article