Your browser doesn't support javascript.
loading
Corticostriatal Projections Relying on GABA Levels Mediate Exercise-Induced Functional Recovery in Cerebral Ischemic Mice.
Xing, Ying; Zhang, Anjing; Li, Congqin; Han, Jing; Wang, Jun; Luo, Lu; Chang, Xuechun; Tian, Zhanzhuang; Bai, Yulong.
Afiliação
  • Xing Y; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, People's Republic of China.
  • Zhang A; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, People's Republic of China.
  • Li C; Department of Neurological Rehabilitation Medicine, The First Rehabilitation Hospital of Shanghai, Shanghai, 200093, People's Republic of China.
  • Han J; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, People's Republic of China.
  • Wang J; State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, No. 130 Dong 'An Road, Xuhui Di
  • Luo L; State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, No. 130 Dong 'An Road, Xuhui Di
  • Chang X; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, People's Republic of China.
  • Tian Z; Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China.
  • Bai Y; State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, No. 130 Dong 'An Road, Xuhui Di
Mol Neurobiol ; 60(4): 1836-1853, 2023 Apr.
Article em En | MEDLINE | ID: mdl-36580196
ABSTRACT
Stroke is a neurological disorder characterized by high disability and death worldwide. The occlusion of the middle cerebral artery (MCAO) supplying the cortical motor regions and its projection pathway regions can either kill the cortical neurons or block their projections to the spinal cord and subcortical structure. The cerebral cortex is the primary striatal afferent, and the medium spiny neurons of the striatum have been identified as the major output neurons projecting to the substantia nigra and pallidum. Thus, disconnection of the corticostriatal circuit often occurs in the model of MCAO. In this study, we hypothesize that striatal network dysfunction in cerebral ischemic mice ultimately modulates the activity of striatal projections from cortical neurons to improve dysfunction during exercise training. In this study, we observed that the corticostriatal circuit originating from glutamatergic neurons could partially medicate the improvement of motor and anxiety-like behavior in mice with exercise. Furthermore, exercising or activating a single optogenetic corticostriatal circuit can increase the striatal gamma-aminobutyric acid (GABA) level. Using the GABA-A receptor antagonist, bicuculline, we further identified that the striatal glutamatergic projection from the cortical neurons relies on the GABAergic synapse's activity to modulate exercise-induced functional recovery. Overall, those results reveal that the dorsal striatum-projecting subpopulation of cortical glutamatergic neurons can influence GABA levels in the striatum, playing a critical role in modulating exercise-induced improvement of motor and anxiety-like behavior.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Corpo Estriado / Neurônios Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Corpo Estriado / Neurônios Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article