Your browser doesn't support javascript.
loading
Mn-N-C catalysts derived from metal triazole framework with hierarchical porosity for efficient oxygen reduction.
Wang, Huiying; Kong, Ziyan; Wang, Minghao; Huang, Bing; Guan, Lunhui.
Afiliação
  • Wang H; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.
  • Kong Z; College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.
  • Wang M; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.
  • Huang B; College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.
  • Guan L; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.
Nanotechnology ; 34(14)2023 Jan 26.
Article em En | MEDLINE | ID: mdl-36634353
ABSTRACT
Manganese and nitrogen co-doped porous carbon (Mn-N-C) are proposed as one of the most up-and-coming non-precious metal electrocatalysts to substitute Pt-based in the oxygen reduction reaction (ORR). Herein, we chose metal triazole frameworks as carbon substrate with hierarchical porosity for trapping and anchoring Mn-containing gaseous species by a mild one-step pyrolysis method. The optimized Mn-N-C electrocatalyst with a large metal content of 1.71 wt% and a volume ratio of 0.86 mesopores pore delivers a superior ORR activity with a half-wave potential (E1/2) of 0.92 V in 0.1 M KOH and 0.78 V in 0.1 M HClO4. Moreover, the modified Mn-N-C catalyst showed superior potential cyclic stability. TheE1/2remained unchanged in 0.1 M KOH and only lost 6 mV in 0.1 M HClO4after 5000 cycles. When applied as the cathode catalyst in Zn-air battery, it exhibited a maximum peak power density of 176 mW cm-2, demonstrating great potential as a usable ORR catalyst in practical devices.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article