Your browser doesn't support javascript.
loading
Volatile organic compounds sensing based on Bennet doubler-inspired triboelectric nanogenerator and machine learning-assisted ion mobility analysis.
Zhu, Jianxiong; Sun, Zhongda; Xu, Jikai; Walczak, Rafal D; Dziuban, Jan A; Lee, Chengkuo.
Afiliação
  • Zhu J; School of Mechanical Engineering, Southeast University, Nanjing 211189, China; Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore; Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapo
  • Sun Z; Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore; Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore; NUS Suzhou Research Institute (NUSRI), Suzhou 215123, China.
  • Xu J; Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore; Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore; NUS Suzhou Research Institute (NUSRI), Suzhou 215123, China.
  • Walczak RD; Department of Mircroengineering and Photovoltaics, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland.
  • Dziuban JA; Department of Mircroengineering and Photovoltaics, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland.
  • Lee C; Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore; Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore; NUS Suzhou Research Institute (NUSRI), Suzhou 215123, China; Integrative Sc
Sci Bull (Beijing) ; 66(12): 1176-1185, 2021 Jun 30.
Article em En | MEDLINE | ID: mdl-36654355
Ion mobility analysis is a well-known analytical technique for identifying gas-phase compounds in fast-response gas-monitoring systems. However, the conventional plasma discharge system is bulky, operates at a high temperature, and inappropriate for volatile organic compounds (VOCs) concentration detection. Therefore, we report a machine learning (ML)-enhanced ion mobility analyzer with a triboelectric-based ionizer, which offers good ion mobility selectivity and VOC recognition ability with a small-sized device and non-strict operating environment. Based on the charge accumulation mechanism, a multi-switched manipulation triboelectric nanogenerator (SM-TENG) can provide a direct current (DC) bias at the order of a few hundred, which can be further leveraged as the power source to obtain a unique and repeatable discharge characteristic of different VOCs, and their mixtures, with a special tip-plate electrode configuration. Aiming to tackle the grand challenge in the detection of multiple VOCs, the ML-enhanced ion mobility analysis method was successfully demonstrated by extracting specific features automatically from ion mobility spectrometry data with ML algorithms, which significantly enhance the detection ability of the SM-TENG based VOC analyzer, showing a portable real-time VOC monitoring solution with rapid response and low power consumption for future internet of things based environmental monitoring applications.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article