Large-Scale Tactile Detection System Based on Supervised Learning for Service Robots Human Interaction.
Sensors (Basel)
; 23(2)2023 Jan 11.
Article
em En
| MEDLINE
| ID: mdl-36679621
In this work, a large-scale tactile detection system is proposed, whose development is based on a soft structure using Machine Learning and Computer Vision algorithms to map the surface of a forearm sleeve. The current application has a cylindrical design, whose dimensions intend to be like a human forearm or bicep. The model was developed assuming that deformations occur only at one section at a time. The goal for this system is to be coupled with the CHARMIE robot, a collaborative robot for domestic and medical environments. This system allows the contact detection of the entire forearm surface enabling interaction between a Human Being and a robot. A matrix with sections can be configured to present certain functionalities, allowing CHARMIE to detect contact in a particular section, and thus perform a specific behaviour. After building the dataset, an Artificial Neural Network (ANN) was created. This network was called Section Detection Network (SDN), and through Supervised Learning, a model was created to predict the contact location. Furthermore, Stratified K-Fold Cross Validation (SKFCV) was used to divide the dataset. All these steps resulted in Neural Network with a test data accuracy higher than 80%. Regarding the real-time evaluation, a graphical interface was structured to demonstrate the predicted class and the corresponding probability. This research concluded that the method described has enormous potential to be used as a tool for service robots allowing enhanced human-robot interaction.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Robótica
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Limite:
Humans
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article