Your browser doesn't support javascript.
loading
Dual characteristics of Bellamya aeruginosa encountering Microcystis aeruginosa: Algal control and toxin depuration.
Wang, Min; Qiu, Yu; Zhang, Ziyi; Chen, Yutao; Qin, Wenli; Guan, Wanchun; Li, Gang; Yu, Hengguo; Dai, Chuanjun; Li, Renhui; Ma, Zengling.
Afiliação
  • Wang M; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 3
  • Qiu Y; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 3
  • Zhang Z; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 3
  • Chen Y; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 3
  • Qin W; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 3
  • Guan W; Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
  • Li G; Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
  • Yu H; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 3
  • Dai C; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 3
  • Li R; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 3
  • Ma Z; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 3
Ecotoxicol Environ Saf ; 252: 114596, 2023 Mar 01.
Article em En | MEDLINE | ID: mdl-36738609
ABSTRACT
The benthic gastropods Bellamya aeruginosa (B. aeruginosa) is ubiquitous in freshwater in China and neighboring countries with great edible value. It has been recognized as a potential manipulator to control harmful algal blooms due to its filtration on algal cells. In this study, the control effect of B. aeruginosa on toxic and non-toxic Microcystis aeruginosa (M. aeruginosa), and the accumulation and depuration of microcystins (MCs) in the snail were systematically explored. Results indicated that although toxic M. aeruginosa could protect itself via producing MCs, the introduction of B. aeruginosa could still effectively inhibit the algae with cell density below 1 × 106 cells/mL. Hepatopancreas was the primary target of MCs in all tissues of B. aeruginosa, presenting a maximum of 3089.60 ng/g DW when exposed to toxic M. aeruginosa of 1.0 × 107 cells/mL. The enrichment of MCs in other tissues following the order of digestive tractgonad > mantle > muscle. Interestingly, snail could again excrete previously enriched MCs when transferred to non-toxic M. aeruginosa, giving rise to over 80% reduction of MCs in the body. After depuration, the estimated daily intake (EDI) of free MCs in intact individuals and the edible parts of B. aeruginosa were both lower than the tolerable daily intake (TDI). These results implicated that B. aeruginosa could control low density of M. aeruginosa in spring. Particularly, the snail could be perfectly safe to consume by purifying for a while after using as manipulator.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Microcystis Limite: Animals / Humans País como assunto: Asia Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Microcystis Limite: Animals / Humans País como assunto: Asia Idioma: En Ano de publicação: 2023 Tipo de documento: Article