Your browser doesn't support javascript.
loading
Incorporation of paclitaxel in mesenchymal stem cells using nanoengineering upregulates antioxidant response, CXCR4 expression and enhances tumor homing.
Prabha, Swayam; Merali, Carmen; Sehgal, Drishti; Nicolas, Emmanuelle; Bhaskar, Nitu; Flores, Magda; Bhatnagar, Shubhmita; Nethi, Susheel Kumar; Barrero, Carlos A; Merali, Salim; Panyam, Jayanth.
Afiliação
  • Prabha S; Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
  • Merali C; Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
  • Sehgal D; Cancer Signaling and Tumor Microenvironment Program, Fox Chase Cancer Center, Temple University, Philadelphia, PA, 19111, USA.
  • Nicolas E; School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA.
  • Bhaskar N; Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
  • Flores M; Cancer Signaling and Tumor Microenvironment Program, Fox Chase Cancer Center, Temple University, Philadelphia, PA, 19111, USA.
  • Bhatnagar S; School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA.
  • Nethi SK; School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA.
  • Barrero CA; School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA.
  • Merali S; Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
  • Panyam J; School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA.
Mater Today Bio ; 19: 100567, 2023 Apr.
Article em En | MEDLINE | ID: mdl-36747581
ABSTRACT
Engineered mesenchymal stem cells (MSCs) have been investigated extensively for gene delivery and, more recently, for targeted small molecule delivery. While preclinical studies demonstrate the potential of MSCs for targeted delivery, clinical studies suggest that tumor homing of native MSCs may be inefficient. We report here a surprising finding that loading MSCs with the anticancer drug paclitaxel (PTX) by nanoengineering results in significantly improved tumor homing compared to naïve MSCs. Loading PTX in MSCs results in increased levels of mitochondrial reactive oxygen species (ROS). In response to this oxidative stress, MSCs upregulate two important set of proteins. First were critical antioxidant proteins, most importantly nuclear factor erythroid 2-like 2 (Nrf2), the master regulator of antioxidant responses; upregulation of antioxidant proteins may explain how MSCs protect themselves from drug-induced oxidative stress. The second was CXCR4, a direct target of Nrf2 and a key mediator of tumor homing; upregulation of CXCR4 suggested a mechanism that may underlie the improved tumor homing of nanoengineered MSCs. In addition to demonstrating the potential mechanism of improved tumor targeting of nanoengineered MSCs, our studies reveal that MSCs utilize a novel mechanism of resistance against drug-induced oxidative stress and cell death, explaining how MSCs can deliver therapeutic concentrations of cytotoxic payload while maintaining their viability.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article