Your browser doesn't support javascript.
loading
A Zeolite-Like Metal-Organic Framework Based Membrane for Reverse Selective Hydrogen Separation and Butane Isomer Sieving.
Chernikova, Valeriya; Shekhah, Osama; Belmabkhout, Youssef; Karunakaran, Madhavan; Eddaoudi, Mohamed.
Afiliação
  • Chernikova V; Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center, Functional Materials Design, Discovery & Development Research Group (FMD3), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
  • Shekhah O; Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center, Functional Materials Design, Discovery & Development Research Group (FMD3), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
  • Belmabkhout Y; Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center, Functional Materials Design, Discovery & Development Research Group (FMD3), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
  • Karunakaran M; Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center, Functional Materials Design, Discovery & Development Research Group (FMD3), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
  • Eddaoudi M; Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center, Functional Materials Design, Discovery & Development Research Group (FMD3), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
Angew Chem Int Ed Engl ; 62(16): e202218842, 2023 Apr 11.
Article em En | MEDLINE | ID: mdl-36762967
ABSTRACT
Here, the fabrication of a defect-free membrane that is based on a zeolite-like metal-organic framework (ZMOF) with the underlying ana topology is reported. The unique ana-ZMOF structure provides high degree of pore connectivity, which is reflected by the fast transport of gases. Prominently, it offers an optimum pore-aperture size, affording notable sieving selectivity for butane/isobutane, and optimal pore energetics for reverse CO2 /H2 separation. This emphasize the potential for the application of pure MOF membranes, paving the way to more sustainability of energy resources.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article