Your browser doesn't support javascript.
loading
Nanoparticle Taylor Dispersion Near Charged Surfaces with an Open Boundary.
Vilquin, Alexandre; Bertin, Vincent; Raphaël, Elie; Dean, David S; Salez, Thomas; McGraw, Joshua D.
Afiliação
  • Vilquin A; Gulliver UMR 7083 CNRS, PSL Research University, ESPCI Paris, 10 rue Vauquelin, 75005 Paris, France.
  • Bertin V; IPGG, 6 rue Jean-Calvin, 75005 Paris, France.
  • Raphaël E; Gulliver UMR 7083 CNRS, PSL Research University, ESPCI Paris, 10 rue Vauquelin, 75005 Paris, France.
  • Dean DS; Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France.
  • Salez T; Physics of Fluids Group, Faculty of Science and Technology, and Mesa+Institute, University of Twente, 7500AE Enschede, Netherlands.
  • McGraw JD; Gulliver UMR 7083 CNRS, PSL Research University, ESPCI Paris, 10 rue Vauquelin, 75005 Paris, France.
Phys Rev Lett ; 130(3): 038201, 2023 Jan 20.
Article em En | MEDLINE | ID: mdl-36763385
ABSTRACT
The dispersive spreading of microscopic particles in shear flows is influenced both by advection and thermal motion. At the nanoscale, interactions between such particles and their confining boundaries become unavoidable. We address the roles of electrostatic repulsion and absorption on the spatial distribution and dispersion of charged nanoparticles in near-surface shear flows, observed under evanescent illumination. The electrostatic repulsion between particles and the lower charged surface is tuned by varying electrolyte concentrations. Particles leaving the field of vision can be neglected from further analysis, such that the experimental ensemble is equivalent to that of Taylor dispersion with absorption. These two ingredients modify the particle distribution, deviating strongly from the Gibbs-Boltzmann form at the nanoscale studied here. The overall effect is to restrain the accessible space available to particles, which leads to a striking, tenfold reduction in the spreading dynamics as compared to the noninteracting case.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article