Surface Superconductivity with High Transition Temperatures in Layered CanBn+1Cn+1 Films.
Nano Lett
; 23(5): 1924-1929, 2023 Mar 08.
Article
em En
| MEDLINE
| ID: mdl-36790290
Proposed by Ginzberg nearly 60 years ago, surface superconductivity refers to the emergent phenomenon that the electrons on or near the surface of a material becomes superconducting despite its bulk is nonsuperconducting. Here, based on first-principles calculations within density functional theory, we predict that the superconducting transition temperature Tc at the surfaces of CanBn+1Cn+1 (n = 1, 2, 3, ...) films can be drastically enhanced to â¼90 K from 8 K for bulk CaBC. Our detailed analyses reveal that structural symmetry reduction at surfaces induces pronounced carrier self-doping into the surface B-C layer of the films and shifts the σ-bonding states toward the Fermi level; furthermore, the in-plane stretching modes of the surface layers experience significant softening. These two effects work collaboratively to strongly enhance the electron-phonon coupling, which in turn results in much higher Tc values than the McMillian limit. These findings point to new material platforms for realizing unusually high-Tc surface superconductivity.
Texto completo:
1
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article