Your browser doesn't support javascript.
loading
Liquid nitrogen quenching inducing lattice tensile strain to endow nitrogen/fluorine co-doping Fe3O4 nanocubes assembled on porous carbon with optimizing hydrogen evolution reaction.
Wang, Chao; Wang, Wei; Guo, Wenxin; Guo, Dongxuan; Li, Jinlong; Yang, Xue; Fu, Shanshan; Chai, Dong-Feng; Sui, Guozhe; Li, Yue.
Afiliação
  • Wang C; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
  • Wang W; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
  • Guo W; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
  • Guo D; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China. Electronic address: dongxuanguo92@gmail.com.
  • Li J; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China. Electronic address: jinlong141@163.com.
  • Yang X; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
  • Fu S; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
  • Chai DF; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China. Electronic address: chaidf_chem@163.com.
  • Sui G; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
  • Li Y; School of Polymer Science & Engineering, Qingdao University of Science & Technology, Qingdao, China.
J Colloid Interface Sci ; 638: 813-824, 2023 May 15.
Article em En | MEDLINE | ID: mdl-36791479
ABSTRACT
In this work, the lattice tensile strain of nitrogen/fluorine co-doping ferroferric oxide (Fe3O4) nanocubes assembled on chrysanthemum tea-derived porous carbon is induced through a novel liquid nitrogen quenching treatment (named as TS-NF-FO/PCX-Y, TS Tensile strain, NF Nitrogen/Fluorine co-doping, FO Fe3O4, PC Porous carbon, X The weight ratio of KOH/carbon, Y The adding amount of porous carbon). Besides, the electrocatalytic activity influenced by the adding amount of porous carbon, the type of dopant, and the introduction of lattice tensile strain is systematically studied and explored. The interconnected porous carbon could improve electrical conductivity and prevent Fe3O4 nanocubes from aggregating. The induced nitrogen/fluorine could cause extrinsic defects and tailor the intrinsic electron state of the host materials. Lattice tensile strain could tailor the surface electronic structure of Fe3O4 via changing the dispersion of surface atoms and their bond lengths. Impressively, the designed TS-NF-FO/PC5-0.25 delivers a low overpotential of 207.3 ± 0.4 mV at 10 mA/cm2 and demonstrates desirable reaction dynamics. Density functional theory calculations illustrate that the electron structure and hydrogen adsorption free energy (ΔG*H) are optimized by the synergistic effect among porous carbon, nitrogen/fluorine co-doping and lattice tensile strain, thus promoting hydrogen evolution reaction (HER) catalytic activity. Overall, this work paves the way to unravel the enhancement mechanism of HER on transition metal oxide-based materials by electronic structure and phase composition modulation strategy.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article