Structure-directed linker optimization of novel HEPTs as non-nucleoside inhibitors of HIV-1 reverse transcriptase.
Bioorg Chem
; 133: 106413, 2023 04.
Article
em En
| MEDLINE
| ID: mdl-36791619
1-[(2-Hydroxyethoxy)methyl]-6-(phenylthio)thymines (HEPTs) have been previously described as an important class of HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs). In our continuously pursuing HEPT optimization efforts, a series of novel HEPTs, featuring -C(OH)CH2R, -CC, or -CHCH2R linker at the benzylic α-methylene unit, were developed as NNRTIs. Among these new HEPTs, the compound C20 with -CHCH3 group at the benzylic α-methylene unit conferred the highest potency toward WT HIV-1 and selectivity (EC50 = 0.23 µM, SI = 150.20), which was better than the lead compound HEPT (EC50 = 7 µM, SI = 106). Also, C20 was endowed with high efficacy against clinically relevant mutant strains (EC50(L100I) = 1.07 µM; EC50(K103N) = 4.33 µM; EC50(Y181C) = 5.57 µM; EC50(E138K) = 1.06 µM; EC50(F227L+V106A) = 5.45 µM) and wild-type HIV-1 reverse transcriptase (RT) with an IC50 value of 0.55 µM. Molecular docking and molecular dynamics simulations, as well as preliminary structure-activity relationship (SAR) analysis of these new compounds, provided a deeper insight into the key structural features of the interactions between HEPT analogs and HIV-1 RT and laid the foundation for further modification on HEPT scaffold.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Inibidores da Transcriptase Reversa
/
Fármacos Anti-HIV
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article