Your browser doesn't support javascript.
loading
Entropic form emergent from superstatistics.
Dos Santos, Maike A F; Nobre, Fernando D; Curado, Evaldo M F.
Afiliação
  • Dos Santos MAF; Department of Physics, PUC-Rio, Rua Marquês de São Vicente, 225, 22451-900, Rio de Janeiro, Brazil.
  • Nobre FD; Centro Brasileiro de Pesquisas Físicas Rua Xavier Sigaud, 150, 22290-180, Rio de Janeiro, RJ Brazil.
  • Curado EMF; Centro Brasileiro de Pesquisas Físicas Rua Xavier Sigaud, 150, 22290-180, Rio de Janeiro, RJ Brazil.
Phys Rev E ; 107(1-1): 014132, 2023 Jan.
Article em En | MEDLINE | ID: mdl-36797946
The Beck-Cohen superstatistics became an important theory in the scenario of complex systems because it generates distributions representing regions of a nonequilibrium system, characterized by different temperatures T≡ß^{-1}, leading to a probability distribution f(ß). In superstatistics, some classes have been most frequently considered for f(ß), like χ^{2}, χ^{2} inverse, and log-normal ones. Herein we investigate the superstatistics resulting from a χ_{η}^{2} distribution through a modification of the usual χ^{2} by introducing a real index η (0<η≤1). In this way, one covers two common and relevant distributions as particular cases, proportional to the q-exponential (e_{q}^{-ßx}=[1-(1-q)ßx]^{1/1-q}) and the stretched exponential (e^{-(ßx)^{η}}). Furthermore, an associated generalized entropic form is found. Since these two particular-case distributions have been frequently found in the literature, we expect that the present results should be applicable to a wide range of classes of complex systems.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article