Biomimetic Photocatalytic System Designed by Spatially Separated Cocatalysts on Z-scheme Heterojunction with Identified Charge-transfer Processes for Boosting Removal of U(VI).
Small
; 19(20): e2300003, 2023 May.
Article
em En
| MEDLINE
| ID: mdl-36807523
Designing highly efficient photocatalysts with rapid migration of photogenerated charges and surface reaction kinetics for the photocatalytic removal of uranium (U(VI)) from uranium mine wastewater remains a significant challenge. Inspired by natural photosynthesis, a biomimetic photocatalytic system is assembled by designing a novel hollow nanosphere MnOx @TiO2 @CdS@Au (MTCA) with loading MnOx and Au nano particles (Au NPs) cocatalysts on the inner and outer surfaces of the TiO2 @CdS. The spatially separated cocatalysts efficiently drive the photogenerated charges to migrate in opposite directions, while the Z-scheme heterogeneous shell further separates the interfacial charges. Theoretical calculation identifies multiple consecutive forward charge transfers without charge recombination within MTCA. Thus, MTCA could efficiently remove 99.61% of U(VI) after 15 min of simulated sunlight irradiation within 3 mmol L-1 NaHCO3 with 0.231 min-1 of the reduction rate constant, outperforming most previously reported photocatalysts. MTCA further significantly removes 91.83% of U(VI) from the natural uranium mining wastewater under sunlight irradiation. This study provides a novel approach to designing an ideal biomimetic photocatalyst for remediating environmental pollution.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article