Your browser doesn't support javascript.
loading
Design of a stable human acid-ß-glucosidase: towards improved Gaucher disease therapy and mutation classification.
Pokorna, Sarka; Khersonsky, Olga; Lipsh-Sokolik, Rosalie; Goldenzweig, Adi; Nielsen, Rebekka; Ashani, Yacov; Peleg, Yoav; Unger, Tamar; Albeck, Shira; Dym, Orly; Tirosh, Asa; Tarayra, Rana; Hocquemiller, Michaël; Laufer, Ralph; Ben-Dor, Shifra; Silman, Israel; Sussman, Joel L; Fleishman, Sarel J; Futerman, Anthony H.
Afiliação
  • Pokorna S; Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
  • Khersonsky O; J.Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic.
  • Lipsh-Sokolik R; Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
  • Goldenzweig A; Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
  • Nielsen R; Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
  • Ashani Y; Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
  • Peleg Y; Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
  • Unger T; Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel.
  • Albeck S; Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel.
  • Dym O; Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel.
  • Tirosh A; Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel.
  • Tarayra R; Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel.
  • Hocquemiller M; Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
  • Laufer R; Lysogene, Neuilly-sur-Seine, France.
  • Ben-Dor S; Lysogene, Neuilly-sur-Seine, France.
  • Silman I; Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel.
  • Sussman JL; Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
  • Fleishman SJ; Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
  • Futerman AH; Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
FEBS J ; 290(13): 3383-3399, 2023 07.
Article em En | MEDLINE | ID: mdl-36808692
ABSTRACT
Acid-ß-glucosidase (GCase, EC3.2.1.45), the lysosomal enzyme which hydrolyzes the simple glycosphingolipid, glucosylceramide (GlcCer), is encoded by the GBA1 gene. Biallelic mutations in GBA1 cause the human inherited metabolic disorder, Gaucher disease (GD), in which GlcCer accumulates, while heterozygous GBA1 mutations are the highest genetic risk factor for Parkinson's disease (PD). Recombinant GCase (e.g., Cerezyme® ) is produced for use in enzyme replacement therapy for GD and is largely successful in relieving disease symptoms, except for the neurological symptoms observed in a subset of patients. As a first step toward developing an alternative to the recombinant human enzymes used to treat GD, we applied the PROSS stability-design algorithm to generate GCase variants with enhanced stability. One of the designs, containing 55 mutations compared to wild-type human GCase, exhibits improved secretion and thermal stability. Furthermore, the design has higher enzymatic activity than the clinically used human enzyme when incorporated into an AAV vector, resulting in a larger decrease in the accumulation of lipid substrates in cultured cells. Based on stability-design calculations, we also developed a machine learning-based approach to distinguish benign from deleterious (i.e., disease-causing) GBA1 mutations. This approach gave remarkably accurate predictions of the enzymatic activity of single-nucleotide polymorphisms in the GBA1 gene that are not currently associated with GD or PD. This latter approach could be applied to other diseases to determine risk factors in patients carrying rare mutations.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Celulases / Doença de Gaucher Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Celulases / Doença de Gaucher Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article