Your browser doesn't support javascript.
loading
Paper-based analytical device coupled with Bi-MOF: Electric field amplification and fluorescence sensing of glyphosate.
Wan, Chao-Qun; Pang, Yue-Hong; Yang, Qiu-Yu; Yang, Cheng-Lin; Shen, Xiao-Fang.
Afiliação
  • Wan CQ; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
  • Pang YH; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
  • Yang QY; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
  • Yang CL; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
  • Shen XF; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China. Electronic address: xfshen@jiangnan.edu.cn.
Anal Chim Acta ; 1248: 340930, 2023 Apr 01.
Article em En | MEDLINE | ID: mdl-36813460
Glyphosate, a potent herbicide wildly used in the world, involves potential hazards to human health by accumulating in the food chain. Due to its absence of chromophores and fluorophores, the rapid visual detection of glyphosate has always been difficult. Herein, a paper-based geometric field amplification device visualized by the amino-functionalized bismuth-based metal-organic framework (NH2-Bi-MOF) was constructed for sensitive fluorescence determination of glyphosate. Fluorescence of the synthesized NH2-Bi-MOF was immediately enhanced by interaction with glyphosate. The field amplification of glyphosate was implemented by coordinating the electric field and the electroosmotic flow, which was orchestrated by the geometric configuration of paper channel and the concentration of polyvinyl pyrrolidone, respectively. Under the optimal conditions, the developed method exhibited a linear range of 0.80-200 µmol L-1 with about 12500-fold signal enhancement achieved by just 100 s electric field amplification. It was applied to soil and water with recoveries between 95.7% and 105.6%, holding great prospects in on-site analysis of hazardous anions for environment safety.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article