Your browser doesn't support javascript.
loading
A novel Cuprotosis-related signature predicts the prognosis and selects personal treatments for melanoma based on bioinformatics analysis.
Hu, Bingqian; Hounye, Alphonse Houssou; Wang, Zheng; Qi, Min; Zhang, Jianglin.
Afiliação
  • Hu B; Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
  • Hounye AH; School of Mathematics and Statistics, Central South University, Changsha, China.
  • Wang Z; School of Computer Science, Hunan First Normal University, Changsha, China.
  • Qi M; Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China.
  • Zhang J; Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.
Front Oncol ; 13: 1108128, 2023.
Article em En | MEDLINE | ID: mdl-36824136
Background: Melanoma is a common and aggressive cutaneous malignancy characterized by poor prognosis and a high fatality rate. Recently, due to the application of Immune-checkpoint inhibitors (ICI) in melanoma treatment, melanoma patients' prognosis has been tremendously improved. However, the treatment effect varies quite differently from patient to patient. In this study, we aim to construct and validate a Cuproptosis-related risk model to improve outcome prediction of ICIs in melanoma and divide patients into subtypes with different Cuproptosis-related genes. Methods: Here, according to differentially expressed genes from four melanoma datasets in GEO (Gene Expression Omnibus), and one in TCGA (The Cancer Genome Atlas) database, a novel signature was developed through LASSO and Cox regression analysis. We used 781 melanoma samples to examine the molecular subtypes associated with Cuproptosis-related genes and studied the related gene mutation and TME cell infiltration. Patients with melanoma can be divided into at least three subtypes based on gene expression profile. Survival pan-cancer analysis was also conducted for melanoma patients. Results: The Cuproptosis risk score can predict tumor immunity, subtype, survival, and drug sensitivity for melanoma. And Cuproptosis-associated subtypes can help predict therapeutic outcomes. Conclusion: Cuproptosis risk score is a promising potential biomarker in cancer diagnosis, molecular subtypes determination, TME cell infiltration characteristics, and therapy response prediction in melanoma patients.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article