Your browser doesn't support javascript.
loading
Adaptive metrics for an evolving pandemic A dynamic approach to area-level COVID-19 risk designations.
Bilinski, Alyssa M; Salomon, Joshua A; Hatfield, Laura A.
Afiliação
  • Bilinski AM; Departments of Health Services, Policy and Practice & Biostatistics, Brown University, 121 S. Main St., Providence, RI 02912 USA.
  • Salomon JA; Department of Health Policy, Stanford University, Stanford, CA 94305 USA.
  • Hatfield LA; Department of Health Care Policy, Harvard Medical School, 180 Longwood Ave., Boston, MA 02115 USA.
medRxiv ; 2023 Feb 16.
Article em En | MEDLINE | ID: mdl-36824769
Throughout the COVID-19 pandemic, policymakers have proposed risk metrics, such as the CDC Community Levels, to guide local and state decision-making. However, risk metrics have not reliably predicted key outcomes and often lack transparency in terms of prioritization of false positive versus false negative signals. They have also struggled to maintain relevance over time due to slow and infrequent updates addressing new variants and shifts in vaccine- and infection-induced immunity. We make two contributions to address these weaknesses of risk metrics. We first present a framework to evaluate predictive accuracy based on policy targets related to severe disease and mortality, allowing for explicit preferences toward false negative versus false positive signals. This approach allows policymakers to optimize metrics for specific preferences and interventions. Second, we propose a novel method to update risk thresholds in real-time. We show that this adaptive approach to designating areas as "high risk" improves performance over static metrics in predicting 3-week-ahead mortality and intensive care usage at both state and county levels. We also demonstrate that with our approach, using only new hospital admissions to predict 3-week-ahead mortality and intensive care usage has performed consistently as well as metrics that also include cases and inpatient bed usage. Our results highlight that a key challenge for COVID-19 risk prediction is the changing relationship between indicators and outcomes of policy interest. Adaptive metrics therefore have a unique advantage in a rapidly evolving pandemic context. Significance Statement: In the rapidly-evolving COVID-19 pandemic, public health risk metrics often become less relevant over time. Risk metrics are designed to predict future severe disease and mortality based on currently-available surveillance data, such as cases and hospitalizations. However, the relationship between cases, hospitalizations, and mortality has varied considerably over the course of the pandemic, in the context of new variants and shifts in vaccine- and infection-induced immunity. We propose an adaptive approach that regularly updates metrics based on the relationship between surveillance inputs and future outcomes of policy interest. Our method captures changing pandemic dynamics, requires only hospitalization input data, and outperforms static risk metrics in predicting high-risk states and counties.

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article