Your browser doesn't support javascript.
loading
Fibroblast growth factor pathway component expression in the regenerating zebrafish fin.
Cudak, Nicole; López-Delgado, Alejandra Cristina; Keil, Sebastian; Knopf, Franziska.
Afiliação
  • Cudak N; Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany; Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
  • López-Delgado AC; Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany; Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
  • Keil S; Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany; Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
  • Knopf F; Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany; Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. Electronic address: franz
Gene Expr Patterns ; 48: 119307, 2023 06.
Article em En | MEDLINE | ID: mdl-36841347
ABSTRACT
Adult zebrafish regenerate their appendages (fins) after amputation including the regeneration of bone structures (fin rays). Fibroblast growth factor (Fgf) signaling, which is involved in morphogenetic processes during development, has been shown to be essential for the process of fin regeneration. Moreover, mutations in Fgf pathway component genes lead to abnormal skeletal growth in teleosts and mammals, including humans, illustrating the importance of Fgf signaling in the growth control of tissues. Here, we revisited Fgf signaling pathway component expression by RNA in situ hybridization to test for the expression of about half of the ligands and all receptors of the pathway in the regenerating zebrafish fin. Expression patterns of fgf7, fgf10b, fgf12b, fgf17b and fgfr1b have not been reported in the literature before. We summarize and discuss known and novel localization of expression and find that all five Fgf receptors (fgfr1a, fgfr1b, fgfr2, fgfr3 and fgfr4) and most of the tested ligands are expressed in specific regions of the regenerate. Our work provides a basis to study domain specific functions of Fgf signaling in the regenerating teleost appendage.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peixe-Zebra / Fatores de Crescimento de Fibroblastos Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peixe-Zebra / Fatores de Crescimento de Fibroblastos Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article