Your browser doesn't support javascript.
loading
Differential Impact of Brain Network Efficiency on Poststroke Motor and Attentional Deficits.
Evangelista, Giorgia G; Egger, Philip; Brügger, Julia; Beanato, Elena; Koch, Philipp J; Ceroni, Martino; Fleury, Lisa; Cadic-Melchior, Andéol; Meyer, Nathalie H; Rodríguez, Diego de León; Girard, Gabriel; Léger, Bertrand; Turlan, Jean-Luc; Mühl, Andreas; Vuadens, Philippe; Adolphsen, Jan; Jagella, Caroline E; Constantin, Christophe; Alvarez, Vincent; San Millán, Diego; Bonvin, Christophe; Morishita, Takuya; Wessel, Maximilian J; Van De Ville, Dimitri; Hummel, Friedhelm C.
Afiliação
  • Evangelista GG; Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland (G.G.E., P.E., J.B., E.B., M.C., L.F., A.C.-M., D.d.L.R., T.M., M.J.W., F.C.H.).
  • Egger P; Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Switzerland (G.G.E., P.E., J.B., E.B., M.C., L.F., A.C.-M., T.M., D.d.L.R., M.J.W., F.C.H.).
  • Brügger J; Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland (G.G.E., P.E., J.B., E.B., M.C., L.F., A.C.-M., D.d.L.R., T.M., M.J.W., F.C.H.).
  • Beanato E; Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Switzerland (G.G.E., P.E., J.B., E.B., M.C., L.F., A.C.-M., T.M., D.d.L.R., M.J.W., F.C.H.).
  • Koch PJ; Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland (G.G.E., P.E., J.B., E.B., M.C., L.F., A.C.-M., D.d.L.R., T.M., M.J.W., F.C.H.).
  • Ceroni M; Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Switzerland (G.G.E., P.E., J.B., E.B., M.C., L.F., A.C.-M., T.M., D.d.L.R., M.J.W., F.C.H.).
  • Fleury L; Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland (G.G.E., P.E., J.B., E.B., M.C., L.F., A.C.-M., D.d.L.R., T.M., M.J.W., F.C.H.).
  • Cadic-Melchior A; Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Switzerland (G.G.E., P.E., J.B., E.B., M.C., L.F., A.C.-M., T.M., D.d.L.R., M.J.W., F.C.H.).
  • Meyer NH; Department of Neurology, University of Lübeck, Germany (P.J.K.).
  • Rodríguez DL; Center of Brain, Behavior and Metabolism, University of Lübeck, Germany (P.J.K.).
  • Girard G; Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland (G.G.E., P.E., J.B., E.B., M.C., L.F., A.C.-M., D.d.L.R., T.M., M.J.W., F.C.H.).
  • Léger B; Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Switzerland (G.G.E., P.E., J.B., E.B., M.C., L.F., A.C.-M., T.M., D.d.L.R., M.J.W., F.C.H.).
  • Turlan JL; Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland (G.G.E., P.E., J.B., E.B., M.C., L.F., A.C.-M., D.d.L.R., T.M., M.J.W., F.C.H.).
  • Mühl A; Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Switzerland (G.G.E., P.E., J.B., E.B., M.C., L.F., A.C.-M., T.M., D.d.L.R., M.J.W., F.C.H.).
  • Vuadens P; Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland (G.G.E., P.E., J.B., E.B., M.C., L.F., A.C.-M., D.d.L.R., T.M., M.J.W., F.C.H.).
  • Adolphsen J; Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Switzerland (G.G.E., P.E., J.B., E.B., M.C., L.F., A.C.-M., T.M., D.d.L.R., M.J.W., F.C.H.).
  • Jagella CE; Laboratory of Cognitive Neuroscience, CNP and BMI, EPFL, Switzerland (N.H.M., D.d.L.R.).
  • Constantin C; Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland (G.G.E., P.E., J.B., E.B., M.C., L.F., A.C.-M., D.d.L.R., T.M., M.J.W., F.C.H.).
  • Alvarez V; Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Switzerland (G.G.E., P.E., J.B., E.B., M.C., L.F., A.C.-M., T.M., D.d.L.R., M.J.W., F.C.H.).
  • San Millán D; Laboratory of Cognitive Neuroscience, CNP and BMI, EPFL, Switzerland (N.H.M., D.d.L.R.).
  • Bonvin C; Department of Neurology, Hôpital du Valais, Switzerland (C.C., V.A., D.d.L.R., D.S.M., C.B.).
  • Morishita T; Signal Processing Laboratory (LTS5), School of Engineering, EPFL, Switzerland (G.G.).
  • Wessel MJ; Center for Biomedical Imaging (CIBM), Switzerland (G.G.).
  • Van De Ville D; Department of Radiology, CHUV, Switzerland (G.G.).
  • Hummel FC; Clinique Romande de Réadaptation, Switzerland (B.L., A.M., P.V., J.-L.T.).
Stroke ; 54(4): 955-963, 2023 04.
Article em En | MEDLINE | ID: mdl-36846963
ABSTRACT

BACKGROUND:

Most studies on stroke have been designed to examine one deficit in isolation; yet, survivors often have multiple deficits in different domains. While the mechanisms underlying multiple-domain deficits remain poorly understood, network-theoretical methods may open new avenues of understanding.

METHODS:

Fifty subacute stroke patients (7±3days poststroke) underwent diffusion-weighted magnetic resonance imaging and a battery of clinical tests of motor and cognitive functions. We defined indices of impairment in strength, dexterity, and attention. We also computed imaging-based probabilistic tractography and whole-brain connectomes. To efficiently integrate inputs from different sources, brain networks rely on a rich-club of a few hub nodes. Lesions harm efficiency, particularly when they target the rich-club. Overlaying individual lesion masks onto the tractograms enabled us to split the connectomes into their affected and unaffected parts and associate them to impairment.

RESULTS:

We computed efficiency of the unaffected connectome and found it was more strongly correlated to impairment in strength, dexterity, and attention than efficiency of the total connectome. The magnitude of the correlation between efficiency and impairment followed the order attention>dexterity ≈ strength (strength |r|=.03, P=0.02, dexterity |r|=.30, P=0.05, attention |r|=.55, P<0.001). Network weights associated with the rich-club were more strongly correlated to efficiency than non-rich-club weights.

CONCLUSIONS:

Attentional impairment is more sensitive to disruption of coordinated networks between brain regions than motor impairment, which is sensitive to disruption of localized networks. Providing more accurate reflections of actually functioning parts of the network enables the incorporation of information about the impact of brain lesions on connectomics contributing to a better understanding of underlying stroke mechanisms.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Acidente Vascular Cerebral / Disfunção Cognitiva / Conectoma Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Acidente Vascular Cerebral / Disfunção Cognitiva / Conectoma Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article