Your browser doesn't support javascript.
loading
CCBE1 promotes mitochondrial fusion by inhibiting the TGFß-DRP1 axis to prevent the progression of hepatocellular carcinoma.
Tian, Guang-Ang; Xu, Wen-Ting; Zhang, Xue-Li; Zhou, Yao-Qi; Sun, Yue; Hu, Li-Peng; Jiang, Shu-Heng; Nie, Hui-Zhen; Zhang, Zhi-Gang; Zhu, Lei; Li, Jun; Yang, Xiao-Mei; Yao, Lin-Li.
Afiliação
  • Tian GA; Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, 243 Huaihai West Road, Shanghai 200030, PR China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong Univ
  • Xu WT; Department of Pathology, The International Peace Maternity & Child Health Hospital of China Welfare Institute, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai 200030, PR China.
  • Zhang XL; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
  • Zhou YQ; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
  • Sun Y; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
  • Hu LP; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
  • Jiang SH; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
  • Nie HZ; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
  • Zhang ZG; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
  • Zhu L; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China. Electronic address: lzhu@shsci.org.
  • Li J; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China. Electronic address: junli@shsci.org.
  • Yang XM; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China. Electronic address: xmyang@shsci.org.
  • Yao LL; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China. Electronic address: llyao@shsci.org.
Matrix Biol ; 117: 31-45, 2023 03.
Article em En | MEDLINE | ID: mdl-36849082
ABSTRACT
The extracellular matrix (ECM), as an important component of the tumor microenvironment, exerts various roles in tumor formation. Mitochondrial dynamic disorder is closely implicated in tumorigenesis, including hyperfission in HCC. We aimed to determine the influence of the ECM-related protein CCBE1 on mitochondrial dynamics in HCC. Here, we found that CCBE1 was capable of promoting mitochondrial fusion in HCC. Initially, CCBE1 expression was found to be significantly downregulated in tumors compared with nontumor tissues, which resulted from hypermethylation of the CCBE1 promoter in HCC. Furthermore, CCBE1 overexpression or treatment with recombinant CCBE1 protein dramatically inhibited HCC cell proliferation, migration, and invasion in vitro and in vivo. Mechanistically, CCBE1 functioned as an inhibitor of mitochondrial fission by preventing the location of DRP1 on mitochondria through inhibiting its phosphorylation at Ser616 by directly binding with TGFßR2 to inhibit TGFß signaling activity. In addition, a higher percentage of specimens with higher DRP1 phosphorylation was present in patients with lower CCBE1 expression than in patients with higher CCBE1 expression, which further confirmed the inhibitory effect of CCBE1 on DRP1 phosphorylation at Ser616. Collectively, our study highlights the crucial roles of CCBE1 in mitochondrial homeostasis, suggesting strong evidence for this process as a potential therapeutic strategy for HCC.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Carcinoma Hepatocelular / Neoplasias Hepáticas Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Carcinoma Hepatocelular / Neoplasias Hepáticas Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article