Your browser doesn't support javascript.
loading
Efficient biosynthesis of resveratrol via combining phenylalanine and tyrosine pathways in Saccharomyces cerevisiae.
Meng, Lijun; Diao, Mengxue; Wang, Qingyan; Peng, Longyun; Li, Jianxiu; Xie, Nengzhong.
Afiliação
  • Meng L; State Key Laboratory of NonFood Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-Refinery, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China. menglj@gx
  • Diao M; State Key Laboratory of NonFood Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-Refinery, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China.
  • Wang Q; State Key Laboratory of NonFood Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-Refinery, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China.
  • Peng L; State Key Laboratory of NonFood Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-Refinery, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China.
  • Li J; State Key Laboratory of NonFood Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-Refinery, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China.
  • Xie N; State Key Laboratory of NonFood Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-Refinery, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China. xienengzh
Microb Cell Fact ; 22(1): 46, 2023 Mar 08.
Article em En | MEDLINE | ID: mdl-36890537
ABSTRACT

BACKGROUND:

Resveratrol is a commercially available stilbenoid widely used as dietary supplements, functional food ingredients, and cosmetic ingredients due to its diverse physiological activities. The production of resveratrol in microorganisms provides an ideal source that reduces the cost of resveratrol, but the titer in Saccharomyces cerevisiae was still much lower than that in other hosts.

RESULTS:

To achieve enhanced production of resveratrol in S. cerevisiae, we constructed a biosynthetic pathway via combining phenylalanine and tyrosine pathways by introducing a bi-functional phenylalanine/tyrosine ammonia lyase from Rhodotorula toruloides. The combination of phenylalanine pathway with tyrosine pathway led to a 462% improvement of resveratrol production in yeast extract peptone dextrose (YPD) medium with 4% glucose, suggesting an alternative strategy for producing p-coumaric acid-derived compounds. Then the strains were further modified by integrating multi-copy biosynthetic pathway genes, improving metabolic flux to aromatic amino acids and malonyl-CoA, and deleting by-pathway genes, which resulted in 1155.0 mg/L resveratrol in shake flasks when cultured in YPD medium. Finally, a non-auxotrophic strain was tailored for resveratrol production in minimal medium without exogenous amino acid addition, and the highest resveratrol titer (4.1 g/L) ever reported was achieved in S. cerevisiae to our knowledge.

CONCLUSIONS:

This study demonstrates the advantage of employing a bi-functional phenylalanine/tyrosine ammonia lyase in the biosynthetic pathway of resveratrol, suggesting an effective alternative in the production of p-coumaric acid-derived compounds. Moreover, the enhanced production of resveratrol in S. cerevisiae lays a foundation for constructing cell factories for various stilbenoids.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Tirosina Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Tirosina Idioma: En Ano de publicação: 2023 Tipo de documento: Article