Your browser doesn't support javascript.
loading
Differentiation of Peritubular Myoid-Like Cells from Human Induced Pluripotent Stem Cells.
Robinson, Meghan; Haegert, Anne; Li, Yen-Yi; Morova, Tunc; Zhang, Angelina Yuan Yuan; Witherspoon, Luke; Hach, Faraz; Willerth, Stephanie M; Flannigan, Ryan.
Afiliação
  • Robinson M; Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada.
  • Haegert A; Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada.
  • Li YY; Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada.
  • Morova T; Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada.
  • Zhang AYY; Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.
  • Witherspoon L; Department of Cell & Systems Biology and Mathematics, University of Toronto, Toronto, ON, M5S 1A1, Canada.
  • Hach F; Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.
  • Willerth SM; Department of Urology, The Ottawa Hospital, Ottawa, ON, K1Y 4E9, Canada.
  • Flannigan R; Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada.
Adv Biol (Weinh) ; 7(7): e2200322, 2023 07.
Article em En | MEDLINE | ID: mdl-36895072
ABSTRACT
Infertility affects 10-15% of couples, with half attributed to male factors. An improved understanding of the cell-type-specific dysfunction contributing to male infertility is needed to improve available therapies; however, human testicular tissues are difficult to obtain for research purposes. To overcome this, researchers have begun to use human induced pluripotent stem cells (hiPSCs) to generate various testis-specific cell types in vitro. Peritubular myoid cells (PTMs) are one such testicular cell type that serves a critical role in the human testis niche but, to date, have not been derived from hiPSCs. This study set forth to generate a molecular-based differentiation method for deriving PTMs from hiPSCs, mirroring in vivo patterning factors. Whole transcriptome profiling and quantitative polymerase chain reaction (qPCR) show that this differentiation method is sufficient to derive cells with PTM-like transcriptomes, including upregulation of hallmark PTM functional genes, secreted growth and matrix factors, smooth muscle, integrins, receptors, and antioxidants. Hierarchical clustering shows that they acquire transcriptomes similar to primary isolated PTMs, and immunostaining shows the acquisition of a smooth muscle phenotype. Overall, these hiPSC-PTMs will allow in vitro study of patient-specific PTM development and function in spermatogenesis and infertility.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células-Tronco Pluripotentes Induzidas / Infertilidade Masculina Limite: Humans / Male Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células-Tronco Pluripotentes Induzidas / Infertilidade Masculina Limite: Humans / Male Idioma: En Ano de publicação: 2023 Tipo de documento: Article