Your browser doesn't support javascript.
loading
Video-based Person re-identification with parallel correction and fusion of pedestrian area features.
She, Liang; You, Meiyue; Wang, Jianyuan; Zeng, Yangyan.
Afiliação
  • She L; School of Computer Science and Engineering, Central South University, Changsha 410083, China.
  • You M; School of Computer Science, Hunan University of Technology and Business, Changsha 410205, China.
  • Wang J; School of Computer Science and Engineering, Beihang University, Beijing 100191, China.
  • Zeng Y; School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China.
Math Biosci Eng ; 20(2): 3504-3527, 2023 Jan.
Article em En | MEDLINE | ID: mdl-36899591
Deep learning has provided powerful support for person re-identification (person re-id) over the years, and superior performance has been achieved by state-of-the-art. While under practical application scenarios such as public monitoring, the cameras' resolutions are usually 720p, the captured pedestrian areas tend to be closer to 128×64 small pixel size. Research on person re-id at 128×64 small pixel size is limited by less effective pixel information. The frame image qualities are degraded and inter-frame information complementation requires a more careful selection of beneficial frames. Meanwhile, there are various large differences in person images, such as misalignment and image noise, which are harder to distinguish from person information at the small size, and eliminating a specific sub-variance is still not robust enough. The Person Feature Correction and Fusion Network (FCFNet) proposed in this paper introduces three sub-modules, which strive to extract discriminate video-level features from the perspectives of "using complementary valid information between frames" and "correcting large variances of person features". The inter-frame attention mechanism is introduced through frame quality assessment, guiding informative features to dominate the fusion process and generating a preliminary frame quality score to filter low-quality frames. Two other feature correction modules are fitted to optimize the model's ability to perceive information from small-sized images. The experiments on four benchmark datasets confirm the effectiveness of FCFNet.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article