Your browser doesn't support javascript.
loading
Single Crystalline Films of Ce3+-Doped Y3MgxSiyAl5-x-yO12 Garnets: Crystallization, Optical, and Photocurrent Properties.
Gorbenko, Vitaliy; Zorenko, Tetiana; Shakhno, Anna; Popielarski, Pawel; Osvet, Andres; Batentschuk, Miroslaw; Fedorov, Alexander; Mahlik, Sebastian; Lesniewski, Tadeusz; Majewska, Natalia; Zorenko, Yuriy.
Afiliação
  • Gorbenko V; Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz, Poland.
  • Zorenko T; Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz, Poland.
  • Shakhno A; Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz, Poland.
  • Popielarski P; Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz, Poland.
  • Osvet A; Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering VI, University of Erlangen-Nürnberg, 91058 Erlangen, Germany.
  • Batentschuk M; Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering VI, University of Erlangen-Nürnberg, 91058 Erlangen, Germany.
  • Fedorov A; SSI Institute for Single Crystals, National Academy of Sciences of Ukraine, 61178 Kharkiv, Ukraine.
  • Mahlik S; Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdansk, Wita Stwosza 57, 80-308 Gdansk, Poland.
  • Lesniewski T; Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdansk, Wita Stwosza 57, 80-308 Gdansk, Poland.
  • Majewska N; Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdansk, Wita Stwosza 57, 80-308 Gdansk, Poland.
  • Zorenko Y; Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz, Poland.
Materials (Basel) ; 16(5)2023 Feb 24.
Article em En | MEDLINE | ID: mdl-36902985
ABSTRACT
This research focuses on LPE growth, and the examination of the optical and photovoltaic properties of single crystalline film (SCF) phosphors based on Ce3+-doped Y3MgxSiyAl5-x-yO12 garnets with Mg and Si contents in x = 0-0.345 and y = 0-0.31 ranges. The absorbance, luminescence, scintillation, and photocurrent properties of Y3MgxSiyAl5-x-yO12Ce SCFs were examined in comparison with Y3Al5O12Ce (YAGCe) counterpart. Especially prepared YAGCe SCFs with a low (x, y < 0.1) concentration of Mg2+ and Mg2+-Si4+ codopants also showed a photocurrent that increased with rising Mg2+ and Si4+ concentrations. Mg2+ excess was systematically present in as-grown Y3MgxSiyAl5-x-yO12Ce SCFs. The as-grown SCFs of these garnets under the excitation of α-particles had a low light yield (LY) and a fast scintillation response with a decay time in the ns range due to producing the Ce4+ ions as compensators for the Mg2+ excess. The Ce4+ dopant recharged to the Ce3+ state after SCF annealing at T > 1000 °C in a reducing atmosphere (95%N2 + 5%H2). Annealed SCF samples exhibited an LY of around 42% and similar scintillation decay kinetics to those of the YAGCe SCF counterpart. The photoluminescence studies of Y3MgxSiyAl5-x-yO12Ce SCFs provide evidence for Ce3+ multicenter formation and the presence of an energy transfer between various Ce3+ multicenters. The Ce3+ multicenters possessed variable crystal field strengths in the nonequivalent dodecahedral sites of the garnet host due to the substitution of the octahedral positions by Mg2+ and the tetrahedral positions by Si4+. In comparison with YAGCe SCF, the Ce3+ luminescence spectra of Y3MgxSiyAl5-x-yO12Ce SCFs greatly expanded in the red region. Using these beneficial trends of changes in the optical and photocurrent properties of Y3MgxSiyAl5-x-yO12Ce garnets as a result of Mg2+ and Si4+ alloying, a new generation of SCF converters for white LEDs, photovoltaics, and scintillators could be developed.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Clinical_trials Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Clinical_trials Idioma: En Ano de publicação: 2023 Tipo de documento: Article