Your browser doesn't support javascript.
loading
Tuning the Microenvironment in Monolayer MgAl Layered Double Hydroxide for CO2 -to-Ethylene Electrocatalysis in Neutral Media.
Xu, Yi Ning; Li, Wenjing; Fu, Huai Qin; Zhang, Xin Yu; Zhao, Jia Yue; Wu, Xuefeng; Yuan, Hai Yang; Zhu, Minghui; Dai, Sheng; Liu, Peng Fei; Yang, Hua Gui.
Afiliação
  • Xu YN; Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
  • Li W; Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
  • Fu HQ; Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, QLD 4222, Australia.
  • Zhang XY; Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
  • Zhao JY; Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
  • Wu X; Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
  • Yuan HY; Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
  • Zhu M; State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
  • Dai S; China Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
  • Liu PF; Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
  • Yang HG; Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
Angew Chem Int Ed Engl ; 62(19): e202217296, 2023 May 02.
Article em En | MEDLINE | ID: mdl-36912381
The electrocatalytic reduction of carbon dioxide provides a feasibility to achieve a carbon-neutral energy cycle. However, there are a number of bottleneck issues to be resolved before industrial application, such as the low conversion efficiency, selectivity and reaction rate, etc. Engineering local environment is a critical way to address these challenges. Here, a monolayer MgAl-LDH was proposed to optimize the local environment of Cu for stimulating industrial-current-density CO2 -to-C2 H4 electroreduction in neutral media. In situ spectroscopic results and theoretical study demonstrated that the Cu electrode modified by MgAl-LDH (MgAl-LDH/Cu) displayed a much higher surface pH value compared to the bare Cu, which could be attributed to the decreased energy barrier for hydrolysis on MgAl-LDH sites with more OH- ions on the surface of the electrode. As a result, MgAl-LDH/Cu achieved a C2 H4 Faradaic efficiency of 55.1 % at a current density up to 300 mA cm-2 in 1.0 M KHCO3 electrolyte.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article