Your browser doesn't support javascript.
loading
Quantum chemistry simulation of ground- and excited-state properties of the sulfonium cation on a superconducting quantum processor.
Motta, Mario; Jones, Gavin O; Rice, Julia E; Gujarati, Tanvi P; Sakuma, Rei; Liepuoniute, Ieva; Garcia, Jeannette M; Ohnishi, Yu-Ya.
Afiliação
  • Motta M; IBM Quantum, IBM Research - Almaden 650 Harry Road San Jose 95120 CA USA mario.motta@ibm.com gojones@us.ibm.com jmgarcia@us.ibm.com.
  • Jones GO; IBM Quantum, IBM Research - Almaden 650 Harry Road San Jose 95120 CA USA mario.motta@ibm.com gojones@us.ibm.com jmgarcia@us.ibm.com.
  • Rice JE; IBM Quantum, IBM Research - Almaden 650 Harry Road San Jose 95120 CA USA mario.motta@ibm.com gojones@us.ibm.com jmgarcia@us.ibm.com.
  • Gujarati TP; IBM Quantum, IBM Research - Almaden 650 Harry Road San Jose 95120 CA USA mario.motta@ibm.com gojones@us.ibm.com jmgarcia@us.ibm.com.
  • Sakuma R; Materials Informatics Initiative, RD Technology & Digital Transformation Center, JSR Corporation 3-103-9, Tonomachi, Kawasaki-ku Kawasaki 210-0821 Kanagawa Japan yuuya_oonishi@jsr.co.jp.
  • Liepuoniute I; IBM Quantum, IBM Research - Almaden 650 Harry Road San Jose 95120 CA USA mario.motta@ibm.com gojones@us.ibm.com jmgarcia@us.ibm.com.
  • Garcia JM; IBM Quantum, IBM Research - Almaden 650 Harry Road San Jose 95120 CA USA mario.motta@ibm.com gojones@us.ibm.com jmgarcia@us.ibm.com.
  • Ohnishi YY; Materials Informatics Initiative, RD Technology & Digital Transformation Center, JSR Corporation 3-103-9, Tonomachi, Kawasaki-ku Kawasaki 210-0821 Kanagawa Japan yuuya_oonishi@jsr.co.jp.
Chem Sci ; 14(11): 2915-2927, 2023 Mar 15.
Article em En | MEDLINE | ID: mdl-36937596
The computational description of correlated electronic structure, and particularly of excited states of many-electron systems, is an anticipated application for quantum devices. An important ramification is to determine the dominant molecular fragmentation pathways in photo-dissociation experiments of light-sensitive compounds, like sulfonium-based photo-acid generators used in photolithography. Here we simulate the static and dynamical electronic structure of the H3S+ molecule, taken as a minimal model of a triply-bonded sulfur cation, on a superconducting quantum processor of the IBM Falcon architecture. To this end, we generalize a qubit reduction technique termed entanglement forging or EF [A. Eddins et al., Phys. Rev. X Quantum, 2022, 3, 010309], currently restricted to the evaluation of ground-state energies, to the treatment of molecular properties. While in a conventional quantum simulation a qubit represents a spin-orbital, within EF a qubit represents a spatial orbital, reducing the number of required qubits by half. We combine the generalized EF with quantum subspace expansion [W. Colless et al., Phys. Rev. X, 2018, 8, 011021], a technique used to project the time-independent Schrodinger equation for ground- and excited-states in a subspace. To enable experimental demonstration of this algorithmic workflow, we deploy a sequence of error-mitigation techniques. We compute dipole structure factors and partial atomic charges along ground- and excited-state potential energy curves, revealing the occurrence of homo- and heterolytic fragmentation. This study is an important step towards the computational description of photo-dissociation on near-term quantum devices, as it can be generalized to other photodissociation processes and naturally extended in different ways to achieve more realistic simulations.

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article