Functional annotation and comparative analysis of four Botrytis cinerea mitogenomes reported from Punjab, Pakistan.
Saudi J Biol Sci
; 30(4): 103605, 2023 Apr.
Article
em En
| MEDLINE
| ID: mdl-36950365
Botrytis cinerea is one of the top phytopathogenic fungus which ubiquitously cause grey mold on a variety of horticultural plants. The mechanism of respiration in the fungus occurs within the mitochondria. Mitogenomes serve as a key molecular marker for the investigation of fungal evolutionary patterns. This study aimed at the complete assembly, characterization, and comparative relationship of four mitogenomes of Botrytis cinerea strains including Kst5C, Kst14A, Kst32B, Kst33A, respectively. High throughput sequencing of four mitogenomes allowed the full assembly and annotation of these sequences. The total genome length of these 4 isolates Kst5C Kst14A, Kst32B, Kst33A was 69,986 bp, 77,303 bp, 76,204 bp and 55, 226 bp respectively. The distribution of features represented 2 ribosomal RNA genes,14 respiration encoding proteins, 1 mitochondrial ribosomal protein-encoding gene, along with varying numbers of transfer RNA genes, protein-coding genes, mobile intronic regions and homing endonuclease genes including LAGLIDADG and GIY-YIG domains were found in all four mitogenomes. The comparative analyses performed also decipher significant results for four mitogenomes among fungal isolates included in the study. This is the first report on the detailed annotation of mitogenomes as a proof for investigation of variation patterns present with in the B. cinerea causing grey mold on strawberries in Pakistan. This study will also contribute to the rapid evolutionary analysis and population patterns present among Botrytis cinerea.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article