Your browser doesn't support javascript.
loading
2D-nanomaterials for AKI treatment.
Chen, Qiaohui; Wang, Xiaoyuan; Yuan, Chao; Nan, Yayun; Huang, Qiong; Ai, Kelong.
Afiliação
  • Chen Q; Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China.
  • Wang X; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China.
  • Yuan C; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China.
  • Nan Y; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
  • Huang Q; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China.
  • Ai K; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
Front Bioeng Biotechnol ; 11: 1159989, 2023.
Article em En | MEDLINE | ID: mdl-36970615
ABSTRACT
Acute kidney injury has always been considered a sword of Damocles over hospitalized patients and has received increasing attention due to its high morbidity, elevated mortality, and poor prognosis. Hence, AKI has a serious detrimental impact not only on the patients, but also on the whole society and the associated health insurance systems. Redox imbalance caused by bursts of reactive oxygen species at the renal tubules is the key cause of the structural and functional impairment of the kidney during AKI. Unfortunately, the failure of conventional antioxidant drugs complicates the clinical management of AKI, which is limited to mild supportive therapies. Nanotechnology-mediated antioxidant therapies represent a promising strategy for AKI management. In recent years, two-dimensional (2D) nanomaterials, a new subtype of nanomaterials with ultrathin layer structure, have shown significant advantages in AKI therapy owing to their ultrathin structure, large specific surface area, and unique kidney targeting. Herein, we review recent progress in the development of various 2D nanomaterials for AKI therapy, including DNA origami, germanene, and MXene; moreover, we discuss current opportunities and future challenges in the field, aiming to provide new insights and theoretical support for the development of novel 2D nanomaterials for AKI treatment.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article