Your browser doesn't support javascript.
loading
Single-Electrode Triboelectric Nanogenerators Based on Ionic Conductive Hydrogel for Mechanical Energy Harvester and Smart Touch Sensor Applications.
Patnam, Harishkumarreddy; Graham, Sontyana Adonijah; Manchi, Punnarao; Paranjape, Mandar Vasant; Yu, Jae Su.
Afiliação
  • Patnam H; Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do 17104, Republic of Korea.
  • Graham SA; Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do 17104, Republic of Korea.
  • Manchi P; Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do 17104, Republic of Korea.
  • Paranjape MV; Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do 17104, Republic of Korea.
  • Yu JS; Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do 17104, Republic of Korea.
ACS Appl Mater Interfaces ; 15(13): 16768-16777, 2023 Apr 05.
Article em En | MEDLINE | ID: mdl-36973637
Recent advancements in wearable electronic technology demand advanced power sources to be flexible, deformable, durable, and sustainable. An ionic-solution-modified conductive hydrogel-based triboelectric nanogenerator (TENG) has advantages in wearable devices. However, fabricating a conductive hydrogel with better mechanical and electrical properties is still a challenge. Herein, a simple approach is developed to insert ion-rich pores inside the hydrogel, followed by ionic solution soaking. The suggested ionic conductive hydrogel is obtained by cross-linking the polyvinyl alcohol (PVA) hydrogel and carboxymethyl cellulose sodium salt (CMC), followed by soaking in the ionic solution. Furthermore, a flexible and shape-adaptable single-electrode TENG (S-TENG) is fabricated by combinations of ionic-solution-modified dual-cross-linked CMC/PVA hydrogel and silicone rubber. Additionally, the effects of the CMC concentration, type of ionic solution, and concentration of optimized ionic solutions on the hydrogel properties and S-TENG output performance are studied systematically. The well-dispersed CMC- and PVA-based hydrogel provides ion-rich pores with high ion migration, leading to enhanced conductivity. The fabricated S-TENG delivers maximum output performance in terms of voltage, current, and charge density of ∼584 V, 25 µA, and 120 µC/m2, respectively. The rectified S-TENG-generated energy is used to charge capacitors and to power a portable electronic display. In addition to energy harvesting, the S-TENG is successfully demonstrated as a touch sensor that can automatically control the light and the speaker based on human motions. This investigation provides a deep insight into the influence of the hydrogel on the device performance and gives a guidance for designing and fabrication of highly flexible and stretchable TENGs.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article