Your browser doesn't support javascript.
loading
Influence of Aerosolization on Endothelial Cells for Efficient Cell Deposition in Biohybrid and Regenerative Applications.
Cheremkhina, Maria; Klein, Sarah; Babendreyer, Aaron; Ludwig, Andreas; Schmitz-Rode, Thomas; Jockenhoevel, Stefan; Cornelissen, Christian G; Thiebes, Anja Lena.
Afiliação
  • Cheremkhina M; Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany.
  • Klein S; Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
  • Babendreyer A; Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany.
  • Ludwig A; Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
  • Schmitz-Rode T; Institute of Molecular Pharmacology, University Hospital RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany.
  • Jockenhoevel S; Institute of Molecular Pharmacology, University Hospital RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany.
  • Cornelissen CG; Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany.
  • Thiebes AL; Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany.
Micromachines (Basel) ; 14(3)2023 Feb 28.
Article em En | MEDLINE | ID: mdl-36984982
The endothelialization of gas exchange membranes can increase the hemocompatibility of extracorporeal membrane oxygenators and thus become a long-term lung replacement option. Cell seeding on large or uneven surfaces of oxygenator membranes is challenging, with cell aerosolization being a possible solution. In this study, we evaluated the endothelial cell aerosolization for biohybrid lung application. A Vivostat® system was used for the aerosolization of human umbilical vein endothelial cells with non-sprayed cells serving as a control. The general suitability was evaluated using various flow velocities, substrate distances and cell concentrations. Cells were analyzed for survival, apoptosis and necrosis levels. In addition, aerosolized and non-sprayed cells were cultured either static or under flow conditions in a dynamic microfluidic model. Evaluation included immunocytochemistry and gene expression via quantitative PCR. Cell survival for all tested parameters was higher than 90%. No increase in apoptosis and necrosis levels was seen 24 h after aerosolization. Spraying did not influence the ability of the endothelial cells to form a confluent cell layer and withstand shear stresses in a dynamic microfluidic model. Immunocytochemistry revealed typical expression of CD31 and von Willebrand factor with cobble-stone cell morphology. No change in shear stress-induced factors after aerosolization was reported by quantitative PCR analysis. With this study, we have shown the feasibility of endothelial cell aerosolization with no significant changes in cell behavior. Thus, this technique could be used for efficient the endothelialization of gas exchange membranes in biohybrid lung applications.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article