Your browser doesn't support javascript.
loading
Enhanced Ammonia Decomposition by Tuning the Support Properties of Ni/GdxCe1-xO2-δ at 600 °C.
He, Haihua; Chen, Chonglai; Bian, Chaoqun; Ren, Junhua; Liu, Jiajia; Huang, Wei.
Afiliação
  • He H; College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, China.
  • Chen C; College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, China.
  • Bian C; College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, China.
  • Ren J; College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, China.
  • Liu J; College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, China.
  • Huang W; College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, China.
Molecules ; 28(6)2023 Mar 18.
Article em En | MEDLINE | ID: mdl-36985722
Ammonia decomposition is a promising method to produce high-purity hydrogen. However, this process typically requires precious metals (such as Ru, Pt, etc.) as catalysts to ensure high efficiency at relatively low temperatures. In this study, we propose using several Ni/GdxCe1-xO2-δ catalysts to improve ammonia decomposition performance by adjusting the support properties. We also investigate the underlying mechanism for this enhanced performance. Our results show that Ni/Ce0.8Gd0.2O2-δ at 600 °C can achieve nearly complete ammonia decomposition, resulting in a hydrogen production rate of 2008.9 mmol.g-1.h-1 with minimal decrease over 150 h. Density functional theory calculations reveal that the recombinative desorption of nitrogen is the rate-limiting step of ammonia decomposition over Ni. Our characterizations indicate that Ni/Ce0.8Gd0.2O2-δ exhibits a high concentration of oxygen vacancies, highly dispersed Ni on the surface, and abundant strong basic sites. These properties significantly enhance the associative desorption of N and strengthen the metal support interactions, resulting in high catalytic activity and stability. We anticipate that the mechanism could be applied to designing additional catalysts with high ammonia decomposition performance at relatively low temperatures.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article