Your browser doesn't support javascript.
loading
Toughening of poly(ionic liquid)-based ion gels with cellulose nanofibers as a sacrificial network.
Watanabe, Takaichi; Oe, Emiho; Mizutani, Yuna; Ono, Tsutomu.
Afiliação
  • Watanabe T; Department of Applied Chemistry, Graduate School of Natural Science, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan. wata-t@okayama-u.ac.jp.
  • Oe E; Department of Applied Chemistry, Graduate School of Natural Science, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan. wata-t@okayama-u.ac.jp.
  • Mizutani Y; Department of Applied Chemistry, Graduate School of Natural Science, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan. wata-t@okayama-u.ac.jp.
  • Ono T; Department of Applied Chemistry, Graduate School of Natural Science, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan. wata-t@okayama-u.ac.jp.
Soft Matter ; 19(15): 2745-2754, 2023 Apr 12.
Article em En | MEDLINE | ID: mdl-36987711
ABSTRACT
Ion gels have the potential to be used in a broad range of applications, such as in carbon dioxide separation membranes and soft electronics. However, their low mechanical strength limits their practical applications. In this study, we developed double-network (DN) ion gels composed of TEMPO-oxidized cellulose nanofibers with hydrophobic groups (TOCNF) and cross-linked poly[1-ethyl-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide] (PC2im-TFSI) networks. The mechanical strength of the gel increased as the amount of TOCNF in the gels increased up to 6 wt%. Moreover, the fracture energy of the DN ion gels with 6 wt% TOCNF was found to be 19 times higher than that of the PC2im-TFSI single network (SN) ion gels. Cyclic stress-strain measurements of the DN gels showed that the loading energy on the gels dissipates owing to the destruction of the physically cross-linked TOCNF network in the gels. The DN ion gels also exhibited a high decomposition temperature of approximately 400 °C because of the thermal stability of all components. Additionally, the fracture energy of the TOCNF/poly(ionic liquid) (PIL) DN ion gel was two times higher than that of the silica nanoparticles/PIL DN ion gel developed in our previous study [Watanabe et al., Soft Matter, 2020, 16, 1572-1581]. This suggests that fiber-shaped nanomaterials are more effective than spherical nanomaterials in enhancing the mechanical properties of ion gels. These results show that TOCNF can be used to toughen PIL-based ion gels and hence broaden their applications.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article