Your browser doesn't support javascript.
loading
The EGFR phosphatase RPTPγ is a redox-regulated suppressor of promigratory signaling.
Joshi, Maitreyi S; Stanoev, Angel; Huebinger, Jan; Soetje, Birga; Zorina, Veronika; Roßmannek, Lisaweta; Michel, Kirsten; Müller, Sven Ah; Bastiaens, Philippe Ih.
Afiliação
  • Joshi MS; Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany.
  • Stanoev A; Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany.
  • Huebinger J; Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany.
  • Soetje B; Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany.
  • Zorina V; Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany.
  • Roßmannek L; Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany.
  • Michel K; Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany.
  • Müller SA; Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany.
  • Bastiaens PI; Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany.
EMBO J ; 42(10): e111806, 2023 05 15.
Article em En | MEDLINE | ID: mdl-36988334
ABSTRACT
Spatially organized reaction dynamics between proto-oncogenic epidermal growth factor receptor (EGFR) and protein tyrosine phosphatases determine EGFR phosphorylation dynamics in response to growth factors and thereby cellular behavior within developing tissues. We show that the reaction dynamics of mutual inhibition between RPTPγ phosphatase and autocatalytic ligandless EGFR phosphorylation enable highly sensitive promigratory EGFR signaling responses to subnanomolar EGF levels, when < 5% receptors are occupied by EGF. EGF thereby triggers an autocatalytic phospho-EGFR reaction by the initial production of small amounts of phospho-EGFR through transient, asymmetric EGF-EGFR2 dimers. Single cell RPTPγ oxidation imaging revealed that phospho-EGFR induces activation of NADPH oxidase, which in turn inhibits RPTPγ-mediated dephosphorylation of EGFR, tilting the autocatalytic RPTPγ/EGFR toggle switch reaction towards ligandless phosphorylated EGFR. Reversibility of this reaction to EGF is maintained by the constitutive phosphatase activity of endoplasmic reticulum-associated TCPTP. This RPTPγ/EGFR reaction at the plasma membrane causes promigratory signaling that is separated from proliferative signaling induced by accumulated, liganded, phosphorylated EGF-EGFR in endosomes. Accordingly, loss of RPTPγ results in constitutive promigratory signaling from phosphorylated EGFR monomers. RPTPγ is thus a suppressor of promigratory oncogenic but not of proliferative EGFR signaling.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fator de Crescimento Epidérmico / Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fator de Crescimento Epidérmico / Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores Idioma: En Ano de publicação: 2023 Tipo de documento: Article