Your browser doesn't support javascript.
loading
Surface Stretching Enables Highly Disordered Graphitic Domains for Ultrahigh Rate Sodium Storage.
Liu, Yi; Wan, Yanhua; Zhang, Jun-Ye; Zhang, Xingmiao; Hung, Chin-Te; Lv, Zirui; Hua, Weiming; Wang, Yonggang; Chao, Dongliang; Li, Wei.
Afiliação
  • Liu Y; Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Wan Y; Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Zhang JY; Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Zhang X; Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Hung CT; Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Lv Z; Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Hua W; Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Wang Y; Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Chao D; Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Li W; Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
Small ; 19(28): e2301203, 2023 Jul.
Article em En | MEDLINE | ID: mdl-37010007
ABSTRACT
Hard carbons (HCs) with high sloping capacity are considered as the leading candidate anode for sodium-ion batteries (SIBs); nevertheless, achieving basically complete slope-dominated behavior with high rate capability is still a big challenge. Herein, the synthesis of mesoporous carbon nanospheres with highly disordered graphitic domains and MoC nanodots modification via a surface stretching strategy is reported. The MoOx surface coordination layer inhibits the graphitization process at high temperature, thus creating short and wide graphite domains. Meanwhile, the in situ formed MoC nanodots can greatly promote the conductivity of highly disordered carbon. Consequently, MoC@MCNs exhibit an outstanding rate capacity (125 mAh g-1 at 50 A g-1 ). The "adsorption-filling" mechanism combined with excellent kinetics is also studied based on the short-range graphitic domains to reveal the enhanced slope-dominated capacity. The insight in this work encourages the design of HC anodes with dominated slope capacity toward high-performance SIBs.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article