Your browser doesn't support javascript.
loading
RFWD3 promotes ZRANB3 recruitment to regulate the remodeling of stalled replication forks.
Moore, Chandler E; Yalcindag, Selin E; Czeladko, Hanna; Ravindranathan, Ramya; Wijesekara Hanthi, Yodhara; Levy, Juliana C; Sannino, Vincenzo; Schindler, Detlev; Ciccia, Alberto; Costanzo, Vincenzo; Elia, Andrew E H.
Afiliação
  • Moore CE; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA.
  • Yalcindag SE; Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA.
  • Czeladko H; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA.
  • Ravindranathan R; Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA.
  • Wijesekara Hanthi Y; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA.
  • Levy JC; Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA.
  • Sannino V; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA.
  • Schindler D; Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA.
  • Ciccia A; DNA Metabolism Laboratory, IFOM ETS, The AIRC Institute for Molecular Oncology , Milan, Italy.
  • Costanzo V; Department of Oncology and Haematology-Oncology, University of Milan , Milan, Italy.
  • Elia AEH; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA.
J Cell Biol ; 222(5)2023 05 01.
Article em En | MEDLINE | ID: mdl-37036693
ABSTRACT
Replication fork reversal is an important mechanism to protect the stability of stalled forks and thereby preserve genomic integrity. While multiple enzymes have been identified that can remodel forks, their regulation remains poorly understood. Here, we demonstrate that the ubiquitin ligase RFWD3, whose mutation causes Fanconi Anemia, promotes recruitment of the DNA translocase ZRANB3 to stalled replication forks and ubiquitinated sites of DNA damage. Using electron microscopy, we show that RFWD3 stimulates fork remodeling in a ZRANB3-epistatic manner. Fork reversal is known to promote nascent DNA degradation in BRCA2-deficient cells. Consistent with a role for RFWD3 in fork reversal, inactivation of RFWD3 in these cells rescues fork degradation and collapse, analogous to ZRANB3 inactivation. RFWD3 loss impairs ZRANB3 localization to spontaneous nuclear foci induced by inhibition of the PCNA deubiquitinase USP1. We demonstrate that RFWD3 promotes PCNA ubiquitination and interaction with ZRANB3, providing a mechanism for RFWD3-dependent recruitment of ZRANB3. Together, these results uncover a new role for RFWD3 in regulating ZRANB3-dependent fork remodeling.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: DNA / DNA Helicases / Ubiquitina-Proteína Ligases / Replicação do DNA Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: DNA / DNA Helicases / Ubiquitina-Proteína Ligases / Replicação do DNA Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article