Your browser doesn't support javascript.
loading
Explainable Artificial Intelligence and Cardiac Imaging: Toward More Interpretable Models.
Salih, Ahmed; Boscolo Galazzo, Ilaria; Gkontra, Polyxeni; Lee, Aaron Mark; Lekadir, Karim; Raisi-Estabragh, Zahra; Petersen, Steffen E.
Afiliação
  • Salih A; William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, United Kingdom (A.S., A.M.L., Z.R.-E., S.E.P.).
  • Boscolo Galazzo I; Department of Computer Science, University of Verona, Italy (I.B.G.).
  • Gkontra P; Department of de Matemàtiques i Informàtica, University of Barcelona, Spain (P.G., K.L.).
  • Lee AM; William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, United Kingdom (A.S., A.M.L., Z.R.-E., S.E.P.).
  • Lekadir K; Department of de Matemàtiques i Informàtica, University of Barcelona, Spain (P.G., K.L.).
  • Raisi-Estabragh Z; William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, United Kingdom (A.S., A.M.L., Z.R.-E., S.E.P.).
  • Petersen SE; Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom (Z.R.-E., S.E.P.).
Circ Cardiovasc Imaging ; 16(4): e014519, 2023 04.
Article em En | MEDLINE | ID: mdl-37042240
Artificial intelligence applications have shown success in different medical and health care domains, and cardiac imaging is no exception. However, some machine learning models, especially deep learning, are considered black box as they do not provide an explanation or rationale for model outcomes. Complexity and vagueness in these models necessitate a transition to explainable artificial intelligence (XAI) methods to ensure that model results are both transparent and understandable to end users. In cardiac imaging studies, there are a limited number of papers that use XAI methodologies. This article provides a comprehensive literature review of state-of-the-art works using XAI methods for cardiac imaging. Moreover, it provides simple and comprehensive guidelines on XAI. Finally, open issues and directions for XAI in cardiac imaging are discussed.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Aprendizado de Máquina Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Aprendizado de Máquina Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article