Metal-organic framework-derived trimetallic oxides with dual sensing functions for ethanol.
Nanoscale
; 15(18): 8181-8188, 2023 May 11.
Article
em En
| MEDLINE
| ID: mdl-37078095
Metal-organic framework (MOF)-derived metal oxide semiconductors have recently received extensive attention in gas sensing applications due to their high porosity and three-dimensional architecture. Still, challenges remain for MOF-derived materials, including low-cost and facile synthetic methods, rational nanostructure design, and superior gas-sensing performances. Herein, a series of Fe-MIL-88B-derived trimetallic FeCoNi oxides (FCN-MOS) with a mesoporous structure were synthesized by a one-step hydrothermal reaction followed by calcination. The FCN-MOS system consists of three main phases: α-Fe2O3 (n-type), CoFe2O4, and NiFe2O4 (p-type), and the nanostructure and pore size can be controlled by altering the content of α-Fe2O3, CoFe2O4, and NiFe2O4. The sensors based on FCN-MOS exhibit a high response of 71.9, a good selectivity towards 100 ppm ethanol at 250 °C, and long-term stability up to 60 days. Additionally, the FCN-MOS-based sensors show a p-n transition gas sensing behavior with the alteration of the Fe/Co/Ni ratio.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article