Your browser doesn't support javascript.
loading
Inactive Trojan Bacteria as Safe Drug Delivery Vehicles Crossing the Blood-Brain Barrier.
Lu, Jianping; Ding, Jiali; Chu, Binbin; Ji, Chen; Zhang, Qian; Xu, Yanan; Song, Bin; Wang, Houyu; He, Yao.
Afiliação
  • Lu J; Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China.
  • Ding J; Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China.
  • Chu B; Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China.
  • Ji C; Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China.
  • Zhang Q; Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China.
  • Xu Y; Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China.
  • Song B; Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China.
  • Wang H; Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China.
  • He Y; Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China.
Nano Lett ; 23(10): 4326-4333, 2023 05 24.
Article em En | MEDLINE | ID: mdl-37130058
ABSTRACT
Escherichia coli K1 (EC-K1) can bypass the blood-brain barrier (BBB) and cause meningitis. Excitingly, we find the "dead EC-K1" can safely penetrate the BBB because they retain the intact structure and chemotaxis of the live EC-K1, while losing their pathogenicity. Based on this, we develop a safe "dead EC-K1"-based drug delivery system, in which EC-K1 engulf the maltodextrin (MD)-modified therapeutics through the bacteria-specific MD transporter pathway, followed by the inactivation via UV irradiation. We demonstrate that the dead bacteria could carry therapeutics (e.g., indocyanine green (ICG)) and together bypass the BBB after intravenous injection into the mice, delivering ∼3.0-fold higher doses into the brain than free ICG under the same conditions. What is more, all mice remain healthy even after 14 days of intravenous injection of ∼109 CFU of inactive bacteria. As a proof of concept, we demonstrate the developed strategy enables the therapy of bacterial meningitis and glioblastoma in mice.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Barreira Hematoencefálica / Meningites Bacterianas Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Barreira Hematoencefálica / Meningites Bacterianas Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article