Your browser doesn't support javascript.
loading
Effect of Charge on Carbon Support on the Catalytic Activity of Cu2O toward CO2 Reduction to C2 Products.
Wang, Yating; Cheng, Ling; Ge, Wangxin; Zhu, Yihua; Zhang, Jie; Chen, Rongzhen; Zhang, Ling; Li, Yuhang; Li, Chunzhong.
Afiliação
  • Wang Y; Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
  • Cheng L; School of Chemical Engineering, East China University of Science & Technology, Shanghai 200237, China.
  • Ge W; Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
  • Zhu Y; Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
  • Zhang J; School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
  • Chen R; Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
  • Zhang L; Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
  • Li Y; Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
  • Li C; Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
ACS Appl Mater Interfaces ; 15(19): 23306-23315, 2023 May 17.
Article em En | MEDLINE | ID: mdl-37132505
ABSTRACT
Electrochemical carbon dioxide (CO2) reduction for C2 products has been studied on a series of supported Cu-based catalysts; however, the charge-promotion effects from the substrates for the selectivity of CO2 reduction are still unclear. Here we localize nanosized Cu2O on three carbon-based substrates that provide different charge-promotion effects positively charged boron-doped graphene (BG), negatively charged nitrogen-doped graphene (NG), and weak negatively charged reduced graphene oxide (rGO). We demonstrate that the charge-promotion effects lead to an increase in faradaic efficiency (FE) for C2 products with an order of rGO/Cu < BG/Cu < pure Cu < NG/Cu and an FEC2/FEC1 ratio from 0.2 to 7.1. By performing in situ characterization, electrokinetic investigations, and density functional theory (DFT) calculations, we reveal that the negatively charged NG is favorable for stabilizing Cu+ species under CO2 reduction, which strengthens CO* adsorption to further boost C-C coupling for C2 products. As a result, we achieve a high C2+ FE of ∼68% at high current densities of 100-250 mA cm-2.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article