Your browser doesn't support javascript.
loading
Bioconjugation of nanozyme and natural enzyme to enable a one-step cascade reaction for the detection of metabolites.
Lang, Jin-Ye; Zhao, Jia-Meng; Ren, Ming-Jin; Wang, Xin-Yu; Chen, Le-Ping; Zhang, Xin-Chi; Wang, Xian-Hua; Dong, Lin-Yi.
Afiliação
  • Lang JY; Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Building B for School of Pharmacy, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300072, China.
  • Zhao JM; Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Building B for School of Pharmacy, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300072, China.
  • Ren MJ; Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Building B for School of Pharmacy, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300072, China.
  • Wang XY; Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Building B for School of Pharmacy, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300072, China.
  • Chen LP; Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Building B for School of Pharmacy, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300072, China.
  • Zhang XC; Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Building B for School of Pharmacy, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300072, China.
  • Wang XH; Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Building B for School of Pharmacy, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300072, China. xianhua.w@163.com.
  • Dong LY; Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Building B for School of Pharmacy, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300072, China. xianhua.w@163.com.
Anal Bioanal Chem ; 415(17): 3385-3398, 2023 Jul.
Article em En | MEDLINE | ID: mdl-37140675
ABSTRACT
Nanozyme, with enzyme-mimicking activity and excellent stability, has attracted extensive attention. However, some inherent disadvantages, including poor dispersion, low selectivity, and insufficient peroxidase-like activity, still limit its further development. Therefore, an innovative bioconjugation of a nanozyme and natural enzyme was conducted. In the presence of graphene oxide (GO), histidine magnetic nanoparticles (H-Fe3O4) were first synthesized by a solvothermal method. The GO-supported H-Fe3O4 (GO@H-Fe3O4) exhibited superior dispersity and biocompatibility because GO was the carrier and possessed outstanding peroxidase-like activity because of the introduction of histidine. Furthermore, the mechanism of the peroxidase-like activity of GO@H-Fe3O4 was the generation of •OH. Uric acid oxidase (UAO) was selected as the model natural enzyme and covalently linked to GO@H-Fe3O4 with hydrophilic poly(ethylene glycol) as a linker. UAO could specifically catalyze the oxidation of uric acid (UA) to generate H2O2, and subsequently, the newly produced H2O2 oxidized the colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue ox-TMB under the catalysis of GO@H-Fe3O4. Based on the above cascade reaction, the GO@H-Fe3O4-linked UAO (GHFU) and GO@H-Fe3O4-linked ChOx (GHFC) were used for the detection of UA in serum samples and cholesterol (CS) in milk, respectively. The method based on GHFU exhibited a wide detection range (5-800 µM) and a low detection limit (1.5 µM) for UA, and the method based on GHFC exhibited a wide detection range (4-400 µM) and a low detection limit (1.13 µM) for CS. These results demonstrated that the proposed strategy had great potential in the field of clinical detection and food safety.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ácido Úrico / Peróxido de Hidrogênio Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ácido Úrico / Peróxido de Hidrogênio Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article